Tìm các hàm
\(f:\left(0;1\right)\rightarrow R:f\left(xyz\right)=xf\left(x\right)+\text{yf}\left(y\right)+zf\left(x\right)\forall x,y,z\in\left(0;1\right)\)
Tìm tất cả các hàm số \(f:\left(0;+\infty\right)\rightarrow\left(0;+\infty\right)\) thỏa mãn
\(f\left(x+f\left(y\right)+y\right)=f\left(2x\right)+f\left(y\right),\forall x,y\in\left(0;+\infty\right)\)
Câu 1: Cho hàm số y= \(f\left(x\right)=x^2+2x-1\)
a. Tính các giá trị \(f\left(-1\right),\) \(f\left(0\right)\) và \(f\left(1\right)\)
b. Tìm toạ độ các điểm có tung độ bằng -1 trên đồ thị hàm số
\(\left[{}\begin{matrix}f\left(-1\right)=-1^2+2\cdot-1-1=-2\\f\left(0\right)=0^2+2\cdot0-1=-1\\f\left(1\right)=1^2+2\cdot1-1=2\end{matrix}\right.\)
Tìm tất cả các hàm số f(x) thỏa mãn điều kiện \(f\left(2010-f\left(0\right)\right)=2010x^2\) \(\forall x\in R\)
Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số \(m\) để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\).
, ( )Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >, ( )
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
1, Cho hàm số y=f(x) và f'(0)=3. Hỏi giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}\)=?
2, Cho hàm số f(x) có đạo hàm trên R và f'(x)=0 có các nghiệm là 1 và -2. Đặt \(g\left(x\right)=f\left(\sqrt{x^2+4}\right)\), hỏi g'(x)=0 có bao nhiêu nghiệm?
Mọi người giúp mình với ạ, mình cần gấp!! Cảm ơn mọi người rất nhiều!!!
1. Áp dụng quy tắc L'Hopital
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)
2.
\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\)
2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm
Cho hàm số \(f\left(x\right)\) có đạo hàm \(f'\left(x\right)\) liên tục trên \(R\) và thỏa mãn các điều kiện \(f\left(x\right)>0,\forall x\in R\), \(f\left(0\right)=1\) và \(f'\left(x\right)=-4x^3.\left(f\left(x\right)\right)^2,\forall x\in R\). Tính \(I=\int_0^1x^3f\left(x\right)dx\)
A.\(I=\dfrac{1}{6}\) B. \(I=ln2\) C. \(I=\dfrac{1}{4}\) D. \(I=\dfrac{ln2}{4}\)
Mình cần bài giải ạ, mình cảm ơn nhiều♥
\(f'\left(x\right)=-4x^3\left(f\left(x\right)\right)^2\Leftrightarrow-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}=4x^3\)
Lấy nguyên hàm hai vế
\(\int-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}dx=\int4x^3dx\)
\(\Leftrightarrow\dfrac{1}{f\left(x\right)}=x^4+c\)
Thay x=0 vào tìm được c=1 \(\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)
\(I=\int\limits^1_0\dfrac{x^3}{x^4+1}dx=\dfrac{1}{4}\int\limits^1_0\dfrac{\left(x^4+1\right)'}{x^4+1}dx=\dfrac{ln2}{4}\)
Chọn D
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 2x}}{x}}&{khi\,\,x \ne 0}\\a&{khi\,\,x = 0}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = a\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\). Khi đó:
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = - 2\).
Vậy với \(a = - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
1) Xác định tất cả các hàm số \(f:ℕ\rightarrowℕ\) thỏa mãn đồng thời 2 điều kiện: \(f\left(2\right)=2\) và \(f\left(mn\right)=f\left(m\right).f\left(n\right)\).
2) Tìm tất cả các hàm \(f:ℤ^+\rightarrowℤ^+\) thỏa mãn \(f\left(f\left(n\right)+m\right)=n+f\left(m+2023\right)\)
Giúp mình mấy bài này với ạ, này là 2 câu khó nhất trong bài về nhà của mình, ngày mốt là phải nộp rồi. Mình cảm ơn các bạn trước nhé.
câu 2:
a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì
f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2
b) Thay m = f(1) ta có
f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)
Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.
cho hàm số \(f\left(x\right)=2x^2+1\). đặt \(y=f\left(x\right)-f'\left(x\right)\). tìm x để \(y'\left(x\right)=0\)?
\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)
\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)
Tìm các số a, b, c, d sao cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) đạt cực tiểu tại \(x=0;f\left(0\right)=0\) và đạt cực tiểu tại \(x=1;f\left(1\right)=1\)
Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)
Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi
\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)
Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)
\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)
Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)
Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)
Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)
\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)
\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)
Vậy \(a=-2;b=3;c=0;d=0\)