Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Chau Pham
Xem chi tiết
nthv_.
4 tháng 12 2021 lúc 9:06

\(\left[{}\begin{matrix}f\left(-1\right)=-1^2+2\cdot-1-1=-2\\f\left(0\right)=0^2+2\cdot0-1=-1\\f\left(1\right)=1^2+2\cdot1-1=2\end{matrix}\right.\)

Kimian Hajan Ruventaren
Xem chi tiết
Scarlett
Xem chi tiết
Gia Huy
20 tháng 6 2023 lúc 16:17

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

hằng hồ thị hằng
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 23:49

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

AllesKlar
Xem chi tiết
Hồ Nhật Phi
15 tháng 4 2022 lúc 21:37

undefined

Trung Nguyen
15 tháng 4 2022 lúc 21:43

\(f'\left(x\right)=-4x^3\left(f\left(x\right)\right)^2\Leftrightarrow-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}=4x^3\)

Lấy nguyên hàm hai vế

\(\int-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}dx=\int4x^3dx\)

\(\Leftrightarrow\dfrac{1}{f\left(x\right)}=x^4+c\)

Thay x=0 vào tìm được c=1 \(\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)

\(I=\int\limits^1_0\dfrac{x^3}{x^4+1}dx=\dfrac{1}{4}\int\limits^1_0\dfrac{\left(x^4+1\right)'}{x^4+1}dx=\dfrac{ln2}{4}\)

Chọn D

 

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:16

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Lê Song Phương
Xem chi tiết
Nguyễn Đức Tuấn
8 tháng 6 2023 lúc 23:12

câu 2: 

a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì

f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2

b) Thay m = f(1) ta có

f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)

Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 23:32

\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)

\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)

Nguyễn Hương Giang
Xem chi tiết
Phạm Thảo Vân
23 tháng 4 2016 lúc 11:42

Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)

Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi 

\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)

Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)

\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)

Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)

Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)

Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)

\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)

\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)

Vậy \(a=-2;b=3;c=0;d=0\)