Cho \(\Delta\)ABC có A(3;1) hai đường trung tuyến kẻ từ B vad C là d1:2x-y-1=0, d2:x-1=0, Viết phương trình các cạnh của \(\Delta\)
Bài 1:
1. Cho \(\Delta\)ABC vuông tại A. Có AB bằng \(\frac{1}{2}\)BC. Tính góc C?
2. Cho \(\Delta\)ABC vuông tại A. Có góc B=30 độ. C/m AC=\(\frac{1}{2}\)BC
3. Cho \(\Delta\)ABC. Có trung tuyến BM=CN. C/m \(\Delta\)ABC cân tại A.
4. Cho \(\Delta\)ABC có trung tuyến AM đồng thời là đường phân giác góc A. C/m \(\Delta\)ABC cân tại A.
Giúp mk nhé mai phải nộp rùi!!!
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) có đồng dạng với tam giác \(ABC\) không? Tỉ số đồng dạng là bao nhiêu?
b) Cho tam giác \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng \(k\) thì \(\Delta ABC\backsim\Delta A'B'C'\) theo tỉ số nào?
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.
b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).
Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).
Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).
1. Cho \(\Delta ABC\) có AB = AC, M là trung điểm BC. Chứng minh :
a) \(\Delta AMB\) = \(\Delta AMC\)
b) AM \(\perp\) BC
2. Tam giác có 3 cạnh tỉ lệ 2;3;7. Biết chu vi là 24m. Tính độ dài.
a)Vì M là trung điểm BC (gt)
=> MB = MC
Xét △AMB và △AMC có
AB=AC (gt)
AM : cạnh chung
MB=MC (cmt)
=> △AMB = △AMC (c.c.c)
b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
cho \(\Delta ABC\) có A(1;-2) B(3;0) C(-2;-1). tính diện tích \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2,2\right)\\\overrightarrow{BC}=\left(-5,-1\right)\\\overrightarrow{AC}=\left(-3,1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{2^2+2^2}=2\sqrt{2}\\BC=\sqrt{\left(-5\right)^2+\left(-1\right)^1}=\sqrt{26}\\AC=\sqrt{\left(-3\right)^2+1^2}=\sqrt{10}\end{matrix}\right.\)
\(p=\dfrac{2\sqrt{2}+\sqrt{26}+\sqrt{10}}{2}\)
Áp dụng công thức Herong:
\(S=\sqrt{p.\left(p-2\sqrt{2}\right)\left(p-\sqrt{26}\right)\left(p-\sqrt{10}\right)}=\sqrt{16}=4\)
Cho \(\Delta ABC\) có G là trọng tâm . Vẽ đường thẳng d không giao \(\Delta ABC\) . Trên d gọi \(A',B',C',G'\) lần lượt là hình chiếu của \(A,B,C,G\) . Chứng minh rằng \(GG'=\dfrac{AA'+BB'+CC'}{3}\)
Lời giải:
Kéo dài $BG$ cắt $AC$ tại $K$. Kẻ $KK'\perp d$
Trên $BG$ lấy trung điểm $I$. Kẻ $II'\perp d$
Vận dụng công thức đường trung bình trong hình thang ta có:
Xét hình thang $BGG'B'$ có đtb $II'$ thì:
$II'=\frac{BB'+GG'}{2}(1)$
Xét hình thang $AA'C'C$ có đường trung bình $KK'$ thì:
$KK'=\frac{AA'+CC'}{2}(2)$
Xét hình thang $II'KK'$ có đường trung bình $GG'$ thì:
$GG'=\frac{II'+KK'}{2}(3)$
Từ $(1);(2);(3)$ suy ra:
$GG'=\frac{BB'+GG'+AA'+CC'}{4}$
$\Rightarrow GG'=\frac{AA'+BB'+CC'}{3}$
Ta có đpcm.
Cho \(\Delta ABC\) nhọn (\(AB< AC\)) có hai đường cao \(BM,CN\) (\(M\varepsilon AC;N\varepsilon AB\))
\(a\)) CM: \(\Delta AMB\) đồng dạng \(\Delta ANC\) rồi suy ra \(AM.AC=AN.AB\)
b) CM: \(\Delta AMN\) đồng dạng \(\Delta ABC\) rồi suy ra\(AMN=ABC\)
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
1. Cho ΔA'B'C' đồng dạng Δ ABC theo tỉ số k=\(\dfrac{1}{3}\). Biết AB=7, AC=10, BC=9. Tính A'B', A'C', B'C'.
2. Cho ΔA'B'C' đồng dạng Δ ABC, biết góc A=30o, góc B=50o. Tính góc C,A', B', C'.
3. Cho Δ ABC, lấy M, N lần lượt trên AB, AC sao cho MN//BC. CM: ΔAMN đồng dạng ΔABC
Câu 3:
Xét ΔAMN và ΔABC có
AM/AB=AN/AC
\(\widehat{A}\) chung
DO đó: ΔAMN\(\sim\)ΔABC
Câu 1: Cho \(\Delta\)ABC có AB < AC. Kéo dài BA về phía A thêm một đoạn AD bằng với đoạn AB. Kéo dài CA về phía A thêm một đoạn AE bằng với đoạn AC. So sánh \(\Delta\)ABC và \(\Delta\)AED.
Câu 2: Cho\(\Delta\)ABC có AB < AC. Vẽ tia đối của tia AB, trên đó lấy điểm D sao cho AD = AC. Vẽ tia đối của tia AC, trên đó lấy điểm E sao cho AE = AB. So sánh\(\Delta\)ABC và \(\Delta\)AED.
Câu 3: Cho \(\Delta\)ABC có AB < AC. Gọi M là trung điểm của cạnh BC, (đoạn thẳng AM được gọi là đường trung tuyến của \(\Delta\)ABC). Lấy điểm I bất kì trên đường trung tuyến AM. Trên tia đối của tia MA lấy E sao cho ME = MI. So sánh \(\Delta\)BMI và \(\Delta\)MEC.
cho \(\Delta ABC\) có B(3;5) đường cao AH: 2x+5y+3=0, trung tuyến CM: x+y-5=0. viết pt các cạnh \(\Delta ABC\)
AH: 2x+5y+3=0
=>BC: 5x-2y+c=0
Thay x=3 và y=5 vào BC, ta được:
c+15-10=0
=>c=-5
=>5x-2y-5=0
Tọa độ C là:
5x-2y-5=0 và x+y-5=0
=>5x-2y=5 và x+y=5
=>x=15/7 và y=20/7
=>C(15/7;20/7)
AH: 2x+5y+3=0
=>A(x;-2/5x-3/5)
CM: x+y-5=0
=>M(-y+5;y)
Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y
=>x+3+2y=10 và -2/5x+17/5-2y=0
=>x+2y=7 và -2/5x-2y=-17/5
=>x=6 và y=1/2
=>A(6;-3); B(3;5); C(15/7;20/7)
vecto AB=(-3;8)
=>VTPT là (8;3)
=>Phương trình AB là:
8(x-3)+3(y-5)=0
=>8x-24+3y-15=0
=>8x+3y-39=0
A(6;-3); C(15/7;20/7)
vecto AC=(-20/7;41/7)
=>VTPT là (41/7;20/7)
Phương trình AC là:
41/7(x-6)+20/7(y+3)=0
=>41(x-6)+20(y+3)=0
=>41x-246+20y+60=0
=>41x+20y-186=0