Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi thị kim chi
Xem chi tiết
Phạm Ngọc
22 tháng 10 2018 lúc 19:17

Do (P) đi qua A(2;1) nên ta có :

1 = 4a + 4 + 5

<=> 1 = 4a + 9

<=> a = -2

Vậy a = -2 là giá trị cần tìm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2017 lúc 14:55

Đáp án A

Phương Minh Nông
Xem chi tiết
Trần Thị Ngọc Trâm
1 tháng 11 2018 lúc 20:51

parabol P:y=\(a^2+2x+c\) đi qua A(2;3) và (4:0) nên:

\(\left\{{}\begin{matrix}a\ne0\\b=2\\a\cdot4+2\cdot2+c=3\\a\cdot16+2\cdot4+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\b=2\\4a+c=-1\\16a+c=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\dfrac{7}{12}\left(TM\right)\\c=\dfrac{4}{3}\end{matrix}\right.\\ \Rightarrow d:y=-\dfrac{7}{12}x^2+2x+\dfrac{4}{3}\)

\(\)

Nguyễn Lê Phương Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 23:45

\(\Leftrightarrow\left\{{}\begin{matrix}4a+c=2\\-\dfrac{b}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-4a=2-4\cdot\left(-1\right)=6\\a=-1\end{matrix}\right.\)

Phan Trân Mẫn
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 10 2019 lúc 13:56

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

Trần Đình khoa
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:02

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Minh Hiếu
13 tháng 3 2023 lúc 22:42

Ta có:

Prabol đi qua điểm M(2;3) và N(-1,4)

=> \(\left\{{}\begin{matrix}4a+2b+2=3\\a-b+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{6}\\b=-\dfrac{7}{6}\end{matrix}\right.\)

=> chọn B

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:24

Đồ thị hàm số  \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:

\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)

Đồ thị hàm số  \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):

\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow  - b = 12a \Leftrightarrow 12a + b = 0\)

\(a{.6^2} + 6b + c =  - 12 \Leftrightarrow 36a + 6b + c =  - 12\)

Từ 3 phương trình trên ta có: \(a = 3;b =  - 36,c = 96\)

=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)