xác định parabol y= a^2+bx+2 biết rằng p đi qua điểm m (1;5) và có trục đối xứng là đường thẳng x= -1/4
tìm parabol y=ax2 - 4x + c biết
a) parabol có trục đối xứng là đường thẳng x=2 và cắt trục hoành tại điểm có hoành độ =3.
b) parabol đi qua N(1;1) và có tung độ đỉnh=0
Xác định parabol (P) :y=ax2+bx+c biết rằng (P) đi qua điểm A(2 , -7) ; B ( -5;0) và nhận đường thẳng x=1 là trục dối xứng
Xác định parabol \(y=ax^2+bx+2\), biết rằng parabol đó :
a. Đi qua hai điểm \(M\left(1;5\right)\) và \(N\left(-2;8\right)\)
b. Đi qua điểm \(A\left(3;-4\right)\) và có trục đối xứng là \(x=-\dfrac{3}{2}\)
c. Có đỉnh là \(I\left(2;-2\right)\)
d. Đi qua điểm \(B\left(-1;6\right)\) và tung độ của đỉnh là \(-\dfrac{1}{4}\)
tìm parabol (P) y= ax^2+bx+c, biết rằng P đi qua 3 điểm A (1;-1), B(2;3), C(-1;-3)
Biết parabol (P) y = ax2 + bx + c có đỉnh nằm trên trục hoành và đi qua 2 điểm A(0;1) , B(2;1).
Tổng a + b + c là:
1. Xác định tọa độ đỉnh, trục đối xứng và giao điểm của parabol với trục tung và trục hoành (nếu có).
a) 𝑦 = 𝑥2 − 6𝑥 + 5 b) 𝑦 = −2𝑥2 + 2𝑥 − 1
c) 𝑦 = −3𝑥2 + 4𝑥 − 1 d) 𝑦 = 2𝑥2 − 5𝑥 + 2
Lập pt của parabol y=ax2 +c trong các trường hợp sau:
1- parabol đi qua điểm A (2, 3) và có GTNN là -2
2- parabol có đỉnh (0, 3) và cắt trục hoành tại điểm có hoành độ bằng 2