parabol y= ax2+bx+c đi qua A(2,-7)
\(\Rightarrow-7=a.2^2+b.2+c\)
\(\Rightarrow-7=4a+2b+c\)
\(\Rightarrow4a+2b+c=-7\)(1)
parabol y=ax2+bx+c đi qua B (-5,0)
\(\Rightarrow0=a\left(-5\right)^2+b.\left(-5\right)+c\)
\(\Rightarrow0=25a-5b+c\)
\(\Rightarrow25a-5b+c=0\)(2)
parabol có trục đối cứng là x=2 nên ta có
\(\frac{-b}{2a}=2\Leftrightarrow-b=4a\Leftrightarrow4a+b=0\left(3\right)\)
từ (1) ,(2) và (3) ta có hệ phương trình
\(\left\{{}\begin{matrix}4a+2b+c=-7\\25a-5b+c=0\\4a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{7}\\b=\frac{-4}{7}\\c=\frac{-45}{7}\end{matrix}\right.\)
đây là theo cách mình làm thôi k hắc là đúng hya sai đâu cho dù sai bạn cũng dựa vào cái kiểu này mà tính nhé
nhận đường thẳng x= 2 là trục đối xứng nha