Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Huy
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

bùi thị kim chi
Xem chi tiết
Akai Haruma
30 tháng 11 2018 lúc 14:14

Lời giải:

Tọa độ trung điểm $M$ của $AB$ là:

\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)

Lê Nhật Tiền
Xem chi tiết
Kinder
Xem chi tiết
Lê Mai Hương
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2020 lúc 17:32

Gọi P là trung điểm AH, Q là trung điểm DH \(\Rightarrow\) PQ là đường trung bình tam giác ADH \(\Rightarrow\left\{{}\begin{matrix}PQ//AD\\PQ=\frac{1}{2}AD\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}PQ//BM\\PQ=BM\end{matrix}\right.\)

\(\Rightarrow PQMB\) là hbh \(\Rightarrow BP//MQ\)

Mặt khác \(PQ//AD\Rightarrow PQ\perp AB\Rightarrow\) P là trực tâm tam giác ABQ

\(\Rightarrow BP\perp AQ\Rightarrow MQ\perp AQ\) (với AQ là trung tuyến kẻ từ A của ADH)

\(\Rightarrow\) Đường thẳng MQ nhận \(\left(1;-7\right)\) là 1 vtpt

Phương trình MQ: \(1\left(x+1\right)-7y=0\Leftrightarrow x-7y+1=0\)

Q là giao AQ và MQ nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-7y+1=0\\7x+y-3=0\end{matrix}\right.\) \(\Rightarrow Q\left(\frac{2}{5};\frac{1}{5}\right)\)

Q là trung điểm DH \(\Rightarrow D\left(2;-1\right)\)

Nguyễn Thành Trung
Xem chi tiết
Đặng Minh Quân
6 tháng 4 2016 lúc 17:04

D G F C N E O M B H K J I A

Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)

Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)

Phương trình cạnh MO qua M có vec tơ chỉ phương \(\overrightarrow{MO}\) là \(9x-5y-24=0\)=> Phương trình cạnh NE qua N và vuông góc với MO là \(5x+9y-22=0\)Gọi E là hình chiếu của N trên MG\(\Rightarrow E=NE\cap MG\Rightarrow E=\left(\frac{163}{53};\frac{39}{53}\right)\)Lại có \(NE\perp MG\Rightarrow\begin{cases}NJ=MG\\\overrightarrow{NE}=k\overrightarrow{NJ}\end{cases}\) \(\left(k\ne0,k\in R\right)\) \(\Rightarrow J\left(-1;3\right)\) vì \(\overrightarrow{NE,}\overrightarrow{NJ}\) cùng chiềuSuy ra phương trình cạnh AD : \(x+1=0\Rightarrow OK=\frac{9}{2}\). Vì KA=KO=KD nên K, O, D thuộc đường tròn tâm K đường kính OKĐường tròn tâm K bán kính OK có phương trình : \(\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\)Vậy tọa độ điểm A và D là nghiệm của hệ \(\begin{cases}\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\\x+1=0\end{cases}\)                                                           \(\Leftrightarrow\begin{cases}\begin{cases}x=-1\\y=6\end{cases}\\\begin{cases}x=-1\\y=-3\end{cases}\end{cases}\)Suy ra \(A\left(-1;6\right);D\left(-1;-3\right)\Rightarrow C\left(8;-3\right);B\left(8;6\right)\)Trường hợp \(D\left(-1;6\right);A\left(-1;-3\right)\) loại do M thuộc CD
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2018 lúc 13:43

Ta có

A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .

Lại có:  A B → . B C → = 1 − 7 + 7.1 = 0  nên A B ⊥ B C .

Từ đó suy ra ABCD là hình vuông.

Chọn C.

Khánh Đào
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 13:10

\(\Leftrightarrow\left(1-2i\right)z-\left(\dfrac{1}{2}-\dfrac{3}{2}i\right)=\left(3-i\right)z\)

\(\Leftrightarrow\left(1-2i\right)z-\left(3-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)

\(\Leftrightarrow\left(-2-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)

\(\Rightarrow z=\dfrac{1-3i}{2\left(-2-i\right)}=\dfrac{1}{10}+\dfrac{7}{10}i\)

\(\Rightarrow A\left(\dfrac{1}{10};\dfrac{7}{10}\right)\) \(\Rightarrow\) tọa độ trung điểm I là \(\left(\dfrac{1}{20};\dfrac{7}{20}\right)\)

Julian Edward
Xem chi tiết
Pumpkin Night
26 tháng 11 2019 lúc 21:38

\(B,D\in\left(d\right):y=ax+b\Rightarrow\left\{{}\begin{matrix}-\frac{1}{3}a+b=\frac{2}{3}\\15a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{1}{23}\\b=\frac{15}{23}\end{matrix}\right.\Rightarrow y=-\frac{1}{23}x+\frac{15}{23}\) (1)

Tương tự

\(\left\{{}\begin{matrix}6a+b=3\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\Rightarrow y=x-3\) (2)

Tìm pthđgđ của (1) và (2) là được

Khách vãng lai đã xóa