Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Gia Huy
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 21:56

Lời giải:

$B=\frac{10^{11}+10}{10^{12}+10}$

Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:

$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$

$\Rightarrow A< B$

 

C
5 tháng 3 2024 lúc 22:14

Dễ vãi

Hoàng Thu Hương
Xem chi tiết
Akai Haruma
24 tháng 3 2021 lúc 21:02

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

Mai gia bảo
Xem chi tiết
Trần Đình Thiên
31 tháng 7 2023 lúc 16:23

a,A,C,D

b,C

Nguyễn Đức Trí
31 tháng 7 2023 lúc 16:24

a) Câu A;D

b) Câu C

Phạm Đỗ An Bình
17 tháng 9 2024 lúc 19:45

a. A,D

b. C

dương trà my
Xem chi tiết
Nguyễn Bảo Trung
11 tháng 7 2017 lúc 21:01

Ta có :\(a=\dfrac{10^{11}-1}{10^{12}-1}\Rightarrow10a=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(b=\dfrac{10^{10}+1}{10^{11}+1}\Rightarrow10b=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

Ta có : \(1-\dfrac{9}{10^{12}-1}\le1+\dfrac{9}{10^{11}+1}\) hay \(10a< 10b\Rightarrow a< b\)

 Mashiro Shiina
11 tháng 7 2017 lúc 21:33

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)

\(A< \dfrac{10^{11}-1+11}{10^{12}-1+11}\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

Nguyễn Trịnh Diệu Linh
Xem chi tiết
Nguyễn Chơn Nhân
12 tháng 5 2018 lúc 16:26

ta có :

\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)

=> 10A<10B =>A<B

vậy A bé hơn B

Trần Lê Việt Hoàng
Xem chi tiết
Nguyễn Lưu Vũ Quang
24 tháng 5 2017 lúc 11:11

Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}\)

\(\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\)

\(\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\)

\(\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).

Nguyễn Huy Tú
24 tháng 5 2017 lúc 11:22

Cách 2:

Ta có: \(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

\(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\Rightarrow1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)

\(\Rightarrow10A< 10B\Rightarrow A< B\)

Vậy A < B

Satoshi_Pikachu
15 tháng 12 2017 lúc 19:42

Cảm ơn hỏi giùm!

Askaban Trần
Xem chi tiết
Lê Yên Hạnh
13 tháng 3 2017 lúc 21:14

\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+....+\dfrac{1}{100}\)

\(A>\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+....+\dfrac{1}{100}\)

( Từ \(\dfrac{1}{100}\) đến \(\dfrac{1}{100}\) có 90 số )

\(A>\dfrac{1}{10}+\dfrac{1}{100}.90\)

\(\Rightarrow A>1\)

Anh Triêt
13 tháng 3 2017 lúc 21:50

\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{100}\)

\(A>\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)

( Từ \(\dfrac{1}{100}\Rightarrow\dfrac{1}{100}\) có 90 số )

\(A>\dfrac{1}{10}+\dfrac{1}{100}.90\)

\(\Rightarrow A>1\)

bùi nguyễn thiên long
Xem chi tiết
Akai Haruma
7 tháng 12 2023 lúc 0:00

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

Duong Thi Nhuong
Xem chi tiết