Giải PT:
x^2 - 3x + 2 + /x-1/ = 0
giải pt:x^3+5x^2+3x-9=0
\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9=0\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-3\right\}\)
Giải phương trình : \(x^3+5x^2+3x-9=0\)
\(\leftrightarrow\left(x^3+3x^2\right)+\left(2x^2+6x\right)-\left(3x+9\right)=0\)
\(\leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left[\left(x^2-x\right)+\left(3x-3\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+3\left(x-1\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left(x+3\right)\left(x-1\right)=0\)
\(\leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy phương trình có nghiệm là x=1,x=-3
Chúc bn hok tốt nhưng nhớ cho mik nghen!! : 3
Cho pt:x2+5x+3m-1=0
Tìm m để pt tm x13--x23+3x1x2=75
X1 + X2 = - 5, X1.X2 = 3m - 1 (Viét) (1) ( bạn tự tìm Điều kiện để phương trình có 2 nghiệm nha)
pt <=>(x1-x2).[(x1+x2)^2 - x1.x2] + 3x1.x2 = 75 (2)
thay (1) vào (2) ta được : (x1-x2)(26-3m) + 3(3m-1) = 75
<=> (x1-x2)(26-3m) = 75 - 3(3m-1) <=> (x1-x2)(26-3m) = 78-9m <=> (x1-x2) = (78-9m) / ((26-3m)
<=> x1-x2 = 3
kết hợp với Điều kiện (1) bạn sẽ có hệ: x1+x2 = = -5
x1- x2 = 3
giải ra được x1 và x2 => m = ? (nhớ kiểm tra Điều kiện delta > 0 )
mấy cái này bạn tự làm ,
100+1876445555=..........
a) giải pt:(2x2+3x-6)2-(3x-2)2=0
b)Tìm 2 số a,b biết rằng tổng và tích của chúng lần lượt là các nghiệm của pt:x2-9x+20=0
Giải pt:x4-2x3+3x2-4x+3=0
(x+2)5-27x3=4(2x+1)(x2+x)
4x4+2x3+12x+4=47x2
\(x^4-2x^3+3x^2-4x+3=0\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x+1+2x^3-6x^2+6x-2+3x^2-6x+3+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x^3-3x^2+3x-1\right)+3\left(x^2-2x+1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1=0\)
Dê thấy: \(\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1>0\) (
Hay pt vô nghiệm
giải pt:x+x/căn x^2 -1=35/12
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow x+\dfrac{x}{\sqrt{x^2-1}}< 0\) pt vô nghiệm
- Xét với \(x>1\):
Bình phương 2 vế của pt đã cho:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=\dfrac{1225}{144}\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}-\dfrac{1225}{144}=0\)
Đặt \(\dfrac{x^2}{\sqrt{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-\dfrac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{25}{12}\\t=-\dfrac{49}{12}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2}{\sqrt{x^2-1}}=\dfrac{25}{12}\)
Tới đây có thể bình phương 2 vế hoặc đặt \(\sqrt{x^2-1}=a\Rightarrow x^2=a^2+1\) đưa về pt bậc 2:
\(\dfrac{a^2+1}{a}=\dfrac{25}{12}\Leftrightarrow a^2-\dfrac{25}{12}a+1=0\) \(\Rightarrow a=...\Rightarrow x=...\)
Giaỉ PT:x^3+1+(x^2-x+1)=0
giải pt:X^4 -4X^3-8X^2+12X+15=0
\(x^4-4x^3-5x^2-3x^2+12x+15=0\)
\(\Leftrightarrow x^2\left(x^2-4x-5\right)-3\left(x^2-4x-5\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-4x-5\right)=0\)
\(x^4-4x^3-8x^2+12x+15=0\)
\(\Leftrightarrow x^4+x^3-5x^3-5x^2-3x^2-3x+15x+15=0\)
\(\Leftrightarrow x^3\left(x+1\right)-5x^2\left(x+1\right)-3x\left(x+1\right)+15\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-3x+15\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-3\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)
Phân tích thành nhân tử ta được:
\(\left(x+1\right)\left(x-5\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)
cho pt:x2-2(m+1)x+4m=0
a) giải pt khi m=-2
b)tìm m để pt có 2 ngiệm x1,x2 thỏa mãn (x1+3)(x2+3)=3m2+12
a, Dễ quá bỏ qua .
b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)
=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)
=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)
Nên phương trình có 2 nghiệm .
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)
- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)
<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)
<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)
<=> \(4m+6\left(m+1\right)+9=3m^2+12\)
<=> \(3m^2-10m-3=0\)
<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)
Vậy ........
cho pt:x2+(m-1)x+2m-5 tìm m để pt có 2 nghiệm x1,x2 thỏa mãn : 4x1+3x2=1
pt có 2 nghiệm x1,x2 \(\Leftrightarrow\Delta\ge0\Leftrightarrow m^2-10m+21\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge7\\m\le3\end{matrix}\right.\)
Vì pt có 2 nghiệm x1,x2 nên theo hệ thức Vi-et thì
\(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=2m-5\end{matrix}\right.\) (I)
Vì \(4x_1+3x_2=1\Rightarrow x_1=\dfrac{1-3x_2}{4}\) thay vào (I) ta được
\(\left\{{}\begin{matrix}\dfrac{x_2+1}{4}=1-m\\\dfrac{\left(1-3x_2\right)x_2}{4}=2m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_2=6-8m\left(1\right)\\x_2-3x_2^2=8m-20\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) ta được
\(3x_2-3x_2^2=-14\Leftrightarrow-3x_2^2+3x_2+14=0\Leftrightarrow\left[{}\begin{matrix}x_2=\dfrac{3+\sqrt{177}}{6}\\x_2=\dfrac{3-\sqrt{177}}{6}\end{matrix}\right.\)
Từ đó dễ dàng tìm được m
p/s: mk làm vội quá bn kiểm tra giúp mk xem có sai sót j ko nhé
\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)
\(=\left(2m-4\right)^2-4\left(3m-3\right)\)
\(=4m^2-16m+16-12m+12\)
\(=4m^2-28m+28\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(4m^2-28m+28>=0\)
\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)
=>\(\left(2m-7\right)^2>=21\)
=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2\right|=6\)
=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)
=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)
=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)
=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)
=>\(4m^2-22m+22-36=6\left|m-1\right|\)
=>\(6\left|m-1\right|=4m^2-22m-14\)(1)
TH1: m>=1
(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)
=>\(4m^2-22m-14-6m+6=0\)
=>\(4m^2-28m-8=0\)
=>\(m^2-7m-2=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)
TH2: m<1
(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)
=>\(4m^2-22m-14=6-6m\)
=>\(4m^2-16m-20=0\)
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)