a, Dễ quá bỏ qua .
b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)
=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)
=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)
Nên phương trình có 2 nghiệm .
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)
- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)
<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)
<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)
<=> \(4m+6\left(m+1\right)+9=3m^2+12\)
<=> \(3m^2-10m-3=0\)
<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)
Vậy ........