Rút gọn biểu thức:3100-399-398-...-3+1
Rút gọn 3100-399+398-397+...+32-3+1
\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)
Tính A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
Tham khảo
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
Tính A = 1 + 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)
tính A = 1-3+32-33+34-...+398-399+3100
tính A = 1-3+32-33+34-...+398-399+3100
Toán lớp 6A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
3A = 3 - 32 + 33 - 34+ 35 - ... + 399 - 3100 + 3101
3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100
4A = 3101 + 1
A = \(\dfrac{3^{101}+1}{4}\)
Tính hợp lý (nếu có thể)
a) A = 273.94.(-243)
b) B = 56 :53 +33.32
c) C = 3100 – 399 + 398 –...– 3+1
a:\(A=3^9\cdot3^8\cdot\left(-3^5\right)=-3^{22}\)
b: \(B=5^3+3^5=125+243=368\)
c: \(3C=3^{101}-3^{100}+3^{99}-...-3^2+3\)
\(\Leftrightarrow4C=3^{101}+1\)
hay \(C=\dfrac{3^{101}+1}{4}\)
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
Cho biểu thức A = 3 + 32 + ... + 399 + 3100 .
Tìm x biết 2A + 3 = 3x
`@` `\text {Ans}`
`\downarrow`
`A = 3 + 3^2 + ... + 3^99 + 3^100`
`=> 3A = 3^2 + 3^3 + ... + 3^100 + 3^101`
`=> 3A - A = (3^2 + 3^3 + ... + 3^100 + 3^101) - (3 + 3^2 + ... + 3^99 + 3^100)`
`=> 2A = 3^101 - 3`
`=> 2A + 3 = 3^101 + 3 - 3`
`=> 2A + 3 = 3^101`
Ta có:
`2A + 3 = 3^x`
`=> x = 101.`
A=3+3^2+...+3^100
=>3*A=3^2+3^3+...+3^101
=>2A=3^101-3
=>2A+3=3^101
Theo đề, ta có: 3^x=3^101
=>x=101
a)Rút gọn phân số : \(\dfrac{25^{28}+25^{24}+25^{20}+.....+25^4+1}{25^{30}+25^{28}+....+25^2+1}\)
b) Cho S = 1-3 + 32-33+.....+398-399
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
A= 3100- 399+ 398-...+ 32- 3
B= (-2)0+ (-2)1+ (-2)2+...+ (-2)2024
C= (\(\dfrac{-1}{5}\))0+ (\(\dfrac{-1}{5}\))1+ (\(\dfrac{-1}{5}\))2+....+ (\(\dfrac{-1}{5}\))2023
a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)
=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)
=>\(4A=3^{101}-3\)
=>\(A=\dfrac{3^{101}-3}{4}\)
b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)
=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)
=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)
=>\(-3B=-2^{2025}-1\)
=>\(B=\dfrac{2^{2025}+1}{3}\)
c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)
=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)
=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)
=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)
=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)
=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)