Cho phương trình \(\left(m+1\right)x^2-2mx+m-2=0\)
a) ĐỊnh m để phương trình có nghiệm kép
b) Định m để phương trình có 2 nghiệm phân biệt thỏa \(x_1^2+x_2^2=x_1+x_2+1\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
Chi phương trình \(^{x^2-x+m=0}\)(1)
tìm m để phương trình (1) có 2 nghiệm phân biệt \(_{x_1;x_2}\)thỏa mãn
\(\left(x_1^2+x_2+m\right)\)\(\left(x_2^2+x_1+m\right)\)= \(m^2\)-m -1
giúp mik vs ạ :((
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
Cho phương trình \(x^2-2\left(m-1\right)x+4m+4=0\) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1+x_2^2=5\)
Cho phương trình
\(x^2-2mx+m^2-9=0\)
a.Giải phương trình với m=-2
b.Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(x_1^2+x_2^2\left(x_1+x_2\right)=12\)
a, Với m = -2 pt có dạng
\(x^2+4x-5=0\)
ta có : a + b + c = 1 + 4 - 5 = 0
nên pt có 2 nghiệm \(x=1;x=-5\)
b, delta' = m^2 - ( m^2 - 9 ) = 9 > 0
Vậy pt luôn có 2 nghiệm pb
Theo Vi et : x1 + x2 = 2m ; x1x2 = m^2 - 9
Ta có : x1^2 + x2^2(x1+x2) = 12
<=> x1^2 + 2x2^2m = 12
đề có thiếu dấu ko bạn ?
a: Thay m=-2 vào pt, ta được:
\(x^2-2\cdot\left(-2\right)\cdot x+\left(-2\right)^2-9=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)
=>x=-5 hoặc x=1
Cho Phương Trình: \(x^2\)-2mx-m=0 (1). Xác định m để phương trình (1) có 2 nghiệm \(_{x_1}\),\(x_2\) thỏa mãn : \(x^2_1\)+2m\(x_2\)+19(m+1)=0
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>(-m)^2-(-m) >= 0`
`<=>m(m+1) >= 0`
`<=>` $\left[\begin{matrix} m \le -1\\ m \ge 0\end{matrix}\right.$
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=-m):}`
Ta có:`x_1 ^2+2mx_2+19(m+1)=0`
`<=>x_1 ^2+(x_1+x_2)x_2+19(m+1)=0`
`<=>x_1 ^2+x_1.x_2+x_2 ^2+19(m+1)=0`
`<=>(x_1+x_2)^2-x_1.x_2+19(m+1)=0`
`<=>(2m)^2-(-m)+19m+19=0`
`<=>4m^2+10m+19=0`
Ptr có:`\Delta'=5^2-4.19=-51 < 0`
`=>` Ptr vô nghiệm
Vậy ko có gtr `m` t/m yêu cầu đề bài