Cho hình chóp SABCD đáy là hình thang vuông tại A và B. AD=2a; AB=BC=a. SC tạo với đáy 1 góc 60°. Tính khoảng cách biết SA vuông góc với đáy a)SA đến BC b)SA đến CD c)AD đến SC
Cho hình chóp SABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA ⊥ (ABCD). Tìm thiết diện của hình chóp bởi mp(P) chứa AB và ⊥ (SCD)
Vì SA vuông góc (ABCD)
=>SA vuông góc CD
Gọi I là trung điểm của AD
=>AI=BC=a
mà AI//BC
nên AB=CI=a
=>AB=CI=ID
=>ΔACD vuông tại C
=>CD vuông góc AC
=>CD vuông góc (SAC)
=>(SCD) vuông góc (SAC)
Vẽ AE vuông góc SC tạiE
=>AE vuông góc (SCD)
mà \(A\in\left(P\right)\perp\left(SCD\right)\)
nên \(AE\in\left(P\right)\)
=>\(E=SC\cap\left(P\right)\)
\(E\in\left(P\right)\cap\left(SCI\right)\)
\(\left(P\right)\supset AB\)//CI thuộc (SCI)
=>(P) cắt (SCI)=Ex//AB//CI
Gọi F=Ex giao SI
=>(P) cắt (SAD) tại AJ
Gọi F=AJ giao SD
=>F=(P)giao (SD)
=>Tứ giác cần tìm là ABEF
cho hình chóp SABCD đáy là hình thang vuông tại A,B. AB=BC=a,AD=2a. Tam giác SAD đều. (SAD) vuông góc với (ABCD). Tính thể tích SABCD
Cho hình chóp SABCD có đáy là hình thang vuông tại A, B, AD= a, AB=2a, BC=3a,SA=2a . H là trung điểm cạnh AB,SH là đường cao của hình chóp SABCD Tính khoảng cách từ điểm Ađến mp (SCD)
A. a 30 7
B. a 30 7
C. a 13 10
D. a 13 7
Đáp án B
Gọi H 1 là chân đường cao kẻ từ H đến DC. H 2 là chân đường cao kẻ từ H đến S H 1 . Khi đó ta có
H H 1 = a 2 , S H = a 3 ⇒ 1 H H 2 = 1 H H 1 2 + 1 S H 2 = 1 3 a 2 + 1 2 a 2 = 5 6 a ⇒ H H 2 = 6 5 a
⇒ d A , S C D = 30 10 a
Chọn phương án B.
Cho hình chóp SABCD, có đáy là hình thang vuông tại A, B, AD = 2BC = 2AB = 2a; SA vuông với đáy, SA = 2a. Gọi I, J lần lượt là trung điểm AD, SD
a) Tính góc giữa SB và (SCD)
b) Tính góc giữa SB và (SCI)
Bài này đặt ở khu vực lớp 12 mình còn giải (vì có thể sử dụng tọa độ hóa cực lẹ)
Còn lớp 11 thì dựng hình được, nhưng việc tính toán số liệu sau đó đúng là thảm họa.
\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x^2+x+2}-2+2-\sqrt[3]{7x+1}}{\sqrt[]{2}\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x-2}{\sqrt[]{x^2+x+2}+2}+\dfrac{8-\left(7x+1\right)}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x-1\right)\left(x+2\right)}{\sqrt[]{x^2+x+2}+2}-\dfrac{7\left(x-1\right)}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x+2}{\sqrt[]{x^2+x+2}+2}-\dfrac{7}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}}=...\)
\(A_1=2\)
Ta có:
\(u_n=-u_{n-1}-2u_{n-2}\Rightarrow u_{n+1}=-u_n-2u_{n-1}\)
\(\Rightarrow u_{n+1}+\dfrac{1}{2}u_n=-\dfrac{1}{2}u_n-2u_{n-1}\)
Bình phương 2 vế:
\(\Rightarrow u_{n+1}^2+u_nu_{n+1}+\dfrac{1}{4}u_n^2=\dfrac{1}{4}u_n^2+2u_nu_{n-1}+4u_{n-1}^2\)
\(\Rightarrow u_{n+1}^2+u_nu_{n+1}=2u_nu_{n-1}+4u_{n-1}^2\)
\(\Rightarrow A_n=2u_n^2+2u_nu_{n-1}+4u_{n-1}^2\)
\(\Rightarrow A_n=2\left(2u_{n-1}^2+u_{n-1}u_n+u_n^2\right)=2A_{n-1}\)
\(\Rightarrow A_n\) là CSN với công bội 2
\(\Rightarrow A_n=2.2^{n-1}=2^n\)
\(\Rightarrow\lim\left(\dfrac{A_n}{2020^n}\right)=\lim\left(\dfrac{2}{2020}\right)^n=0\)
Cho hình chóp SABCD đáy là hình thang vuông tại A và B có AB=BC=a, AD=2a,(SAC) và (SAB) cùng vuông góc với đáy. Tính thể tích SABCD biết a)SB tạo với đáy là 60° b)SC tạo với đáy là 45° c)(SCD) tạo với (ABCD) là 30°
Ta có: \(S_{ABCD}=\dfrac{\left(BC+AD\right).AB}{2}=\dfrac{3}{2}a^2\)
a, \(h=SA=AB.tan60^o=a\sqrt{3}\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.a\sqrt{3}=\dfrac{\sqrt{3}}{2}a^3\)
b, \(h=SA=AD.tan45^o=2a\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.2a=a^3\)
c, Dễ chứng minh được SC vuông góc với CD tại C \(\Rightarrow\widehat{SCA}=30^o\)
\(\Rightarrow h=SA=AC.tan30^o=AD.sin45^o.tan30^o=\dfrac{\sqrt{6}}{3}a\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{6}}{6}a^3\)
Cho hình chóp SABCD có SA vuông góc với (ABCD), SA=a√22, đáy abcd là hình thang vuông tại A và D với AB=2a, AD=DC=a. Tính góc giữa (SBC) và (SCD)
Cho hình chóp SABCD có SA vuông góc với (ABCD), SA=a\(\sqrt{2}\), đáy abcd là hình thang vuông tại A và D với AB=2a, AD=DC=a. Tính góc giữa (SBC) và (ABCD)
Cho hình chóp SABCD là hình thang vuông tại A và B. AD=2a, SA=a căn 3, AB=BC=a. SA vuông góc với đáy. Tính khoảng cách từ. a)A đến (SBC) b)A đến (SCD) c)BC đến (SAD)
cho hình chóp SABCD đáy ABCD là hình thang vuông tại A và B, AB=AC=a, AD=2a, SA vông góc với mp(ABCD), SA=2a. M là 1 điểm thuộc AB, mp(α) qua M và vuông góc với AB
a) Tìm thiết diện (α) với hình chóp SABCD. Thiết diện là hình gì?
b) Đặt AM =x (0<x<a). Tính diện tích thiết diện