Chóp SABCD , ABCD là hình chữ nhật tâm O SA=5a ; AB=2a ; AD=a căn 3 ; SA vuông góc với đáy a) Cm BC vuông góc (SAB) ; CD vuông góc (SAD ) ; (SCD) vuông góc (SAD) b) Tính góc (SC:SAD) ; (SC:SAD) ; (SC:ABCD) c) Tính khoảng cách từ A đến (SBC) và d(A,(SCD)) d)Tính góc giữa 2 mp (SBD) và (ABCD) ; (SCD) và (ABCD)
Cho hình chóp SABCD đáy là hình thang vuông tại A và B. AD=2a; AB=BC=a. SC tạo với đáy 1 góc 60°. Tính khoảng cách biết SA vuông góc với đáy a)SA đến BC b)SA đến CD c)AD đến SC
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp SABCD có đáy là hình thang vuông tại A và D. AB=2a, AD=DC=a. Kẻ AH vuông góc với SC (H thuộc SC). E là trung điểm của AB. Sa vuông góc với (ABCD) và SA=a căn 3. Tính góc giữa a)(SBC) và (ABCD) b)(SAD) và (SAC) c)(SBC) và (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh bên SA vuông góc với đáy và SC tạo với (SAD) góc 30 o . Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng (SCD).
Cho hình chóp SABCD. ABCD là hình vuông cạnh a, tam giác SAD đều, (SAD) vuông góc với đáy. I,J là trung điểm của AD và BC. Tính khoảng cách từ a)AD đến SB b)SA đến BD
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a. H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD, Tính khoảng cách từ điểm A đến mp (SCD)
A . a 30 7
B . a 30 10
C . a 13 10
D . a 13 7
Cho hình chóp SABCD đáy là hình vuông cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính khoảng cách a)SB đến CD b)AD đến SB c)AB đến SD