Cho hình bình hành ABCD. Gọi M và N theo thứ tự là trung điểm của các cạnh AB và CD. Lấy P thuộc CM và Q thuộc AN sao cho AQ : QN = CP:PM=2:1. Chứng minh rằng B,D,P và Q thẳng hàng.
Hỏi đáp
Cho hình bình hành ABCD. Gọi M và N theo thứ tự là trung điểm của các cạnh AB và CD. Lấy P thuộc CM và Q thuộc AN sao cho AQ : QN = CP:PM=2:1. Chứng minh rằng B,D,P và Q thẳng hàng.
Từ giả thiết suy ra \(\overrightarrow{PC}=-2\overrightarrow{PM}\) , \(\overrightarrow{QA}=-2\overrightarrow{QN}\) , \(\overrightarrow{BA}=2\overrightarrow{BM}\) và \(\overrightarrow{DC}=2\overrightarrow{DN}\)
Đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) ta có \(\overrightarrow{BD}=\overrightarrow{a}+\overrightarrow{c}\) và
\(\overrightarrow{BP}=\frac{\overrightarrow{BC}-\left(-2\overrightarrow{BM}\right)}{1-\left(-2\right)}\Rightarrow3\overrightarrow{BP}=\overrightarrow{BC+}2\overrightarrow{BM}=\overrightarrow{c}+\overrightarrow{a}\)
Do đó : \(\overrightarrow{BD}=3\overrightarrow{BM}\) (1)
Hoàn toàn tương tự ta cũng được \(\overrightarrow{DB}=3\overrightarrow{DN}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh
Cho hình hộp ABCD.A'B'C'D'. Gọi M. N theo thứ tự là trọng tâm của cá tam giác BDA', B'D'C'. Chứng minh rằng A,C',M,N thẳng hàng.
Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB'}=\overrightarrow{b}\) và \(\overrightarrow{AD}=\overrightarrow{d}\)
Theo quy tắc hình bình hành ta có :
\(\overrightarrow{AC'}=\overrightarrow{AA'}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{d}\)
Mà \(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{d}=\overrightarrow{AA'}+\overrightarrow{AB}+\overrightarrow{AD}=3\overrightarrow{AM}\)
Suy ra \(\overrightarrow{AC'}=3\overrightarrow{AM}\)
Do đó A, M, C' thẳng hàng
Tương tự cũng có C', N, A thẳng hàng. Suy ra điều cần chứng minh
Cho tứ diên đều ABCD có các cạnh bằng a. Gọi H là hình chiếu của A trên mặt phẳng (BCD) và O là trung điểm đoạn thẳng AH. Chứng minh rằng các đường thẳng OB, OC và OD đôi một vuông góc.
Đặt \(\overrightarrow{AB}=\overrightarrow{a}\), \(\overrightarrow{AC}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\)
Với \(\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=a\) và \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=\frac{a^2}{2}\) (như trong hình vẽ)
Do hình chóp đã cho là hình chóp đều, nên H là trọng tâm của tam giác BCD, do đó :
\(\overrightarrow{AH}=\frac{1}{3}\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)\)
Suy ra \(\overrightarrow{AO}=\frac{1}{6}\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)\)
Vậy : \(\overrightarrow{OB}=\frac{1}{6}\left(-\overrightarrow{a}+\overrightarrow{5b}-\overrightarrow{c}\right)\) Và \(\overrightarrow{OC}=\frac{1}{6}\left(-\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right)\)
Từ đó :
\(36.\overrightarrow{OB}.\overrightarrow{OC}=\left(-\overrightarrow{a}+5\overrightarrow{b}-\overrightarrow{c}\right)\left(-\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right)\)
\(=\overrightarrow{a^2}^{ }+\overrightarrow{a}.\overrightarrow{b}-5\overrightarrow{a}.\overrightarrow{c}-5\overrightarrow{b}.\overrightarrow{a}-5\overrightarrow{b^2}^{ }+25\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{b}-5\overrightarrow{c^2}\)
\(=\overrightarrow{a^2}-4\overrightarrow{a}.\overrightarrow{b}+26\overrightarrow{b}.\overrightarrow{c}-4\overrightarrow{c}.\overrightarrow{a}-5\overrightarrow{b^2}^{ }-5\overrightarrow{c^2}\)
\(=a^2-2a^2+13a^2-2a^2-10a^2=0\)
Suy ra \(OB\perp OC\)
Chứng minh tương tự ta cũng được \(OC\perp OD,OD\perp OB\)
Cho tứ giác ABCD có AB song song với CD. Các đường thẳng AC, BD cắt nhau ở E và các đường thẳng AD, BC cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm cạnh AB, CD. Chứng minh rằng E, F, M, N cùng nằm trên một đường thẳng.
Đặt \(\frac{AB}{CD}=k\)
Do AB // CD nên \(\frac{EA}{EC}=\frac{EB}{ED}=k\) và \(\frac{FA}{FD}=\frac{FB}{FC}=k\) (như hình vẽ)
Suy ra : \(\overrightarrow{EA}=-k\overrightarrow{EC}\), \(\overrightarrow{EB}=-k\overrightarrow{ED}\) , \(\overrightarrow{FA}=-k\overrightarrow{FD}\) và \(\overrightarrow{FB}=-k\overrightarrow{FC}\)
Do M là trung điểm AB và N là trung điểm CD nên :
\(2\overrightarrow{EM}=\overrightarrow{EA}+\overrightarrow{EB}=-k\overrightarrow{EC}-k\overrightarrow{ED}=-2\left(\overrightarrow{EC}+\overrightarrow{ED}\right)=-2k\overrightarrow{EN}\)
Suy ra \(\overrightarrow{EM}=k\overrightarrow{EN}\) (1)
Hoàn toàn tương tự cũng được \(\overrightarrow{FM}=k\overrightarrow{FN}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh
Cho tứ diện ABCD có AB=CD, BC=DA. Gọi M, N theo thứ tự là trung điểm của CA, BD.
Chứng minh rằng MN là đoạn vuông góc chung của các đường thẳng CA và BD
Đặt \(AB=CD=c\), \(BC=DA=a\) , \(AC=b\) và \(BD=d\)
Do N là trung điểm cạnh BD nên theo công thức tính độ dài đường trung tuyến, ta có :
\(AN^2=\frac{c^2+a^2}{2}-\frac{d^2}{4}\) và \(CN^2=\frac{a^2+c^2}{2}-\frac{d^2}{4}\)
Suy ra : \(NA^2-NC^2=0=MA^2-MC^2\)
Từ đó theo kết quả bài toán suy ra \(MN\perp AC\)
Lập luận tương tự ta cũng được \(MN\perp BD\)
Cho lập phương ABCD.A'B'C'D' có độ dài các cạch bằng 1. Xét M trên cạnh AD và N trên canh BB' sao cho \(\frac{AM}{MD}=\frac{B'N'}{NB}\)
Chứng minh răng \(MN\perp A'C\)
Đặt \(\overrightarrow{AB}=\overrightarrow{a}\) , \(\overrightarrow{AD}=\overrightarrow{b}\) ,\(\overrightarrow{AA'}=\overrightarrow{c}\)
Với \(\begin{cases}\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=1\\\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\end{cases}\)
Suy ra \(\overrightarrow{A'C}=\overrightarrow{AC}-\overrightarrow{AA'}=\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\)
Từ giả thiết suy ra \(\frac{AM}{AD}=\frac{B'N}{B'B}\)
Do đó
\(\overrightarrow{AM}=k.\overrightarrow{b}\) , \(\overrightarrow{AN}=\overrightarrow{a}+\left(1-k\right).\overrightarrow{c}\)
Ở đây, \(k=\frac{AM}{AD}=\frac{B'N}{B'B}\)
Suy ra :
\(\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\)
Khi đó :
\(\overrightarrow{MN}.\overrightarrow{A'C}=\left(\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\right).\left(\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\right)\)
\(=1-k+k-1=0\)
Do đó : \(MN\perp A'C\)
cho tam giác ABC vuông tại B lấy một điểm S bất kì trên đường thẳng vuông góc với (ABC) kẻ từ A (S khác A) gọi B1 C1 lần lượt là hình chiếu của điểm A trên SB, SC chứng minh rằng khi S thay đổi thì :
a, Giao tuyến của mp (ABC) và mp (AB1C1) là đường thẳng cố định và là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
b, Đường thẳng B1C1 đi qua điểm cố định I và góc IAB= góc ICA
Giúp nhea! Cho tứ diện SABCD có SA, SB, SC đôi một vuông góc. H là trực tâm tam giác ABC. O là đường tròn ngoại tiếp tam giác ABC
CMR:
\( {(OH^2)/(SH^2)+2=1/(4*cosA*cosB*cosC)}\)
Cho hình chữ nhật ABCD. Gọ H là hình chiếu của A trên đường chéo BD. Trên đoạn BH lấy điểm M và trên đoạn CD láy điểm N sao cho \(\frac{BM}{MH}=\frac{CN}{ND}\)
Chứng minh rằng \(AM\perp MN\)
Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)
Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)
Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)
và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)
Suy ra :
\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)
\(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)
\(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)
\(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)
Suy ra điều phải chứng minh
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi G và H theo thứ tự là trọng tâm và trực tâm của tam giác. Chứng minh rằng
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
Từ đó chứng minh G,H, O thẳng hàng.
Đặt \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OH}\)
Ta sẽ chứng minh \(\overrightarrow{u}=\overrightarrow{O}\)
Gọi A1, B1, C1 theo thứ tự là hình chiếu của A, B, C ( cũng là hình chiếu của H) trên các đường thẳng BC, CA, AB và gọi Ao, Bo, Co theo thứ tự là trung điểm BC, CA, AB (như hình vẽ)
Chiếu vectơ \(\overrightarrow{u}\) lên đường thẳng BC theo phương của \(\overrightarrow{AH}\) ta được
\(\overrightarrow{u_a}=\overrightarrow{A_oA_1}+\overrightarrow{A_oB}+\overrightarrow{A_oC}-\overrightarrow{A_oA_1}=\overrightarrow{O}\)
Suy ra \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{AH}\) (1)
Tương tự như vậy,
ta cũng có \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{BH,}\overrightarrow{CH}\) (2)
Từ (1) và (2) và do các vectơ \(\overrightarrow{AH,}\), \(\overrightarrow{BH},\overrightarrow{CH}\) đôi một không cùng phương suy ra \(\overrightarrow{u}=\overrightarrow{O}\)
Vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
Nhưng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\) nên \(\overrightarrow{OH}=3\overrightarrow{OG}\)
Do đó G, H, O thẳng hàng