Giải PT: X2+6X-14= \(\sqrt{98-35x+6x^2}\)
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
giải pt: \(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\)
\(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\\ \Leftrightarrow2\left(\sqrt{6x-5}-5\right)+\sqrt{x^2-6x+14}-3=x^2-4x-5\)
(đk x>= 5/6)
\(\Leftrightarrow\frac{2\left(6x-5-25\right)}{\sqrt{6x-5}+5}+\frac{x^2-6x+5}{\sqrt{x^2-6x+14}+3}=\left(x+1\right)\left(x-5\right)\)
\(\Leftrightarrow\frac{12\left(x-5\right)}{\sqrt{6x-5}+5}+\frac{\left(x-1\right)\left(x-5\right)}{\sqrt{x^2-6x+14}+3}-\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{12}{\sqrt{6x-5}+5}+\frac{x-1}{\sqrt{x^2-6x+14+3}}-x-1\right)=0\)
suy ra x = 5 ( dễ dàng chứng minh được cái ngoặc còn lại luôn dương với mọi x lớn hơn bằng 5/6 )
vậy x = 5 là nghiệm của phương trình
giải pt sau: x2 -6x +26 =6\(\sqrt{2x+1}\)
\(\Leftrightarrow x^2-6x+8=6\sqrt{2x+1}-18\left(Đk:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=\dfrac{12\left(x-4\right)}{\sqrt{2x+1}+3}\left(\sqrt{2x+1}+3>0\right)\)
+) \(x=4\left(TM\right)\)
+) \(x\ne4\Rightarrow x-2=\dfrac{12}{\sqrt{2x+1}+3}\)
\(\Leftrightarrow x-4=\dfrac{12-2\left(\sqrt{2x+1}+3\right)}{\sqrt{2x+1}+3}\)
\(\Leftrightarrow x-4+\dfrac{2\left(x-4\right)}{\left(\sqrt{2x+1}+3\right)^2}=0\)
\(\Leftrightarrow1+\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}=0\left(x\ne4\right)\)
Vì \(\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}>0\forall x\) => VT>0
=> phương trình vô nghiệm
Vậy \(S=\left\{4\right\}\)
giải pt :
\(^{^{ }6x^4}\)- \(^{35x^3}\)+ \(^{62x^2}\) - \(35x\) +6 = 0
Ta có : \(6x^4-35x^3+62x^2-35x+6=0\)
=> \(6x^4-3x^3-32x^3+16x^2+46x^2-23x-12x+6=0\)
=> \(3x^3\left(2x-1\right)-16x^2\left(2x-1\right)+23x\left(2x-1\right)-6\left(2x-1\right)=0\)
=> \(\left(3x^3-16x^2+23x-6\right)\left(2x-1\right)=0\)
=> \(\left(3x^3-x^2-15x^2+5x+18x-6\right)\left(2x-1\right)=0\)
=> \(\left(x^2\left(3x-1\right)-5x\left(3x-1\right)+6\left(3x-1\right)\right)\left(2x-1\right)=0\)
=> \(\left(x^2-5x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x^2-2x-3x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x\left(x-2\right)-3\left(x-2\right)\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-2=0\\3x-1=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=2\\x=\frac{1}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{2,3,\frac{1}{2},\frac{1}{3}\right\}\)
Nhận thấy \(x=0\) ko là nghiệm, chia 2 vế của pt cho \(x^2\)
\(6x^2+\frac{6}{x^2}-35x-\frac{35}{x}+62=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)-35\left(x+\frac{1}{x}\right)+62=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(6\left(t^2-2\right)-35t+62=0\)
\(\Leftrightarrow6t^2-35t+50=0\Rightarrow\left[{}\begin{matrix}t=\frac{5}{2}\\t=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\3x^2-10x+3=0\end{matrix}\right.\)
Giải PT: \(4x^2+14x+14=4\sqrt{6x+10}\)
Giải PT: \(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=14\)
Cho pt: x2 -6x+8=0 có 2 nghiệm phân biệt x1;x2. Không giải phương trình, hãy tính giá trị biểu thức B=\(\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}\)
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)
cho PT; 3x2 -6x+1=0. gọi x1,x2 là 2 nghiệm của PT. ko giải PT tính
a,A=(x1-1)(x2-1)
b, B=x1(x2-1)+x2(x1-1)
c, C=\(\sqrt{x1}+\sqrt{x2}\)
d, D=\(x1\sqrt{x2}+x2\sqrt{x1}\)
Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)
a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)
b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)
c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)
Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé