Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Nguyễn
Xem chi tiết
Đỗ Thanh Hải
14 tháng 11 2021 lúc 17:32

bạn ơi, đề hình như bị thiếu đáp án, mà đáp án bị thiếu có khi là đáp án đúng á, chứ đây sai hết

Thành Danh Đỗ
Xem chi tiết
HYB
11 tháng 5 2022 lúc 20:38

\(< =>\left\{{}\begin{matrix}\left(3x-1\right)\left(x+2\right)\ge0\\\left(4-x\right)\left(x+3\right)\ge0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x\ge\dfrac{1}{3},x\le-2\\-3\le x\le4\end{matrix}\right.\)

\(< =>\dfrac{1}{3}\le x\le4,-3\le x\le-2\)

Intel core i9-12900K
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 11:50

a, Vì tam giác ABC cân tại A nên \(\widehat{NBM}=\widehat{ACB}\)

Mà \(\widehat{ACB}=\widehat{PCQ}\left(đối.đỉnh\right)\Rightarrow\widehat{NBM}=\widehat{PCQ}\)

Mà \(\widehat{NMB}=\widehat{CPQ}=90^0;BM=PC\)

Do đó \(\Delta BMN=\Delta CPQ\left(g.c.g\right)\)

b, Vì \(BM//PQ\left(\perp BP\right)\) nên \(\widehat{MNI}=\widehat{IQP}\)

Mà \(\widehat{NMI}=\widehat{IPQ}=90^0;MN=PQ\left(\Delta BMN=\Delta CPQ\right)\)

Do đó \(\Delta IMN=\Delta IPQ\left(g.c.g\right)\)

\(\Rightarrow IN=IQ\)

c, Vì IK là đường cao cũng là trung tuyến tam giác KNQ nên tam giác KNQ cân tại K

Phạmmaihuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 7:28

uses crt;

var st:string;

d,i:integer;

begin

clrscr;

readln(st);

d:=length(st);

for i:=1 to d do 

  if (st[i] in ['0'..'9']) then write(st[i]);

readln;

end.

Nguyễn Văn Lạc
Xem chi tiết
Akai Haruma
1 tháng 5 2023 lúc 21:43

Câu nào vậy bạn?

Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 15:08

24:

góc HKI<góc BAC<góc PQT<góc DEG

25:

A=1/3(3/4*7+3/7*10+...+3/100*103)

=1/3(1/4-1/7+1/7-1/10+...+1/100-1/103)

=1/3*99/412

=33/412

03-Trần Trung hải
Xem chi tiết
Đỗ Tuệ Lâm
2 tháng 5 2022 lúc 8:49

đăng nên nói cần câu nào e nhé!

Trần Tuấn Hoàng
2 tháng 5 2022 lúc 10:24

Bài 6:

-Thay \(x=1\) vào \(f\left(x\right)=x\left(x+1\right)+\left(x+1\right)\left(x+2\right)+...+\left(x+49\right)\left(x+50\right)\), ta được:

\(f\left(1\right)=1\left(1+1\right)+\left(1+1\right)\left(1+2\right)+...+\left(1+49\right)\left(1+50\right)\)

\(=1.2+2.3+...+50.51\)

\(=\dfrac{1.2.3+2.3.3+...+50.51.3}{3}\)

\(=\dfrac{1.2.3+2.3.\left(4-1\right)+...+50.51.\left(52-49\right)}{3}\)

\(=\dfrac{1.2.3+2.3.4-1.2.3+...+50.51.52-49.50.51}{3}\)

\(=\dfrac{50.51.52}{3}=44200\)

Dương Thị Hoàn
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 20:45

Phương trình tương đương

\(\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.,k\in Z\)

Xét họ nghiệm \(x=\dfrac{5\pi}{12}+k\pi,k\in Z\)

Do \(-\dfrac{\pi}{2}< \dfrac{5\pi}{12}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{11\pi}{12}< k\pi< \dfrac{9\pi}{4}\)

⇒ \(-\dfrac{11}{12}< k< \dfrac{9}{4}\). Mà k ∈ Z nên k ∈ {0 ; 1}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp :

S1 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12}\right\}\)

Xét họ nghiệm \(x=-\dfrac{\pi}{4}+k\pi\) với k ∈ Z. 

Do \(-\dfrac{\pi}{2}< \dfrac{-\pi}{4}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{\pi}{4}< k\pi< \dfrac{35\pi}{12}\)

nên \(-\dfrac{1}{4}< k< \dfrac{35}{12}\). Mà k ∈ Z nên k∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp 

S2 = \(\left\{-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp

S = S1 \(\cup\) S2 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12};-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

13 Việt Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2024 lúc 14:41

a: \(\widehat{\left(SC;\left(ABCD\right)\right)}=\widehat{CS;CA}=\widehat{SCA}\)

Ta có: SA\(\perp\)(ABCD)

=>SA\(\perp\)AC

=>ΔSAC vuông tại A

Vì ABCD là hình vuông

nên \(AC=AD\cdot\sqrt{2}=a\sqrt{2}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;\left(ABCD\right)}=60^0\)

b: Ta có: BD\(\perp\)AC

BD\(\perp\)SA

SA,AC cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

\(\widehat{SB;\left(SAC\right)}=\widehat{SB;SD}=\widehat{BSD}\)

Vì ABCD là hình vuông

nên \(AC=BD=a\sqrt{2}\)

ΔSAD vuông tại A

=>\(SA^2+AD^2=SD^2\)

=>\(SD^2=\left(a\sqrt{6}\right)^2+a^2=7a^2\)

=>\(SD=a\sqrt{7}\)

ΔSAB vuông tại A

=>\(SA^2+AB^2=SB^2\)

=>\(SB=a\sqrt{7}\)

Xét ΔSBD có \(cosBSD=\dfrac{SB^2+SD^2-BD^2}{2\cdot SB\cdot SD}\)

\(=\dfrac{7a^2+7a^2-2a^2}{2\cdot a\sqrt{7}\cdot a\sqrt{7}}=\dfrac{6}{7}\)

=>\(sinBSD=\sqrt{1-\left(\dfrac{6}{7}\right)^2}=\dfrac{\sqrt{13}}{7}\)

=>\(\widehat{BSD}\simeq31^0\)

=>\(\widehat{SB;\left(SAC\right)}\simeq31^0\)

ancutdi
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:35

\(\left(x-3\right)^{30}=\left(x-3\right)^{10}\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=4\end{matrix}\right.\)

Kirito Matsuhaki
20 tháng 11 2021 lúc 20:04

giúp mìnhundefined

Khách vãng lai đã xóa
Tùng Vũ
Xem chi tiết
nthv_.
23 tháng 10 2021 lúc 16:54

different

composed

knowledge

width

widen

funny

hungry

fame

Tranthikhanhly
20 tháng 8 2022 lúc 18:23

Different,composed,knowledge,width,widen,funny,hungry,fame