\(\dfrac{-5}{-14}=\dfrac{20}{6-5x}
Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \dfrac{5}{-6} ?
\dfrac{-10}{14}\dfrac{-20}{24}\dfrac{-5}{6}\dfrac{-10}{12}\dfrac{-6}{6}\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{8}{15}\)
\(\dfrac{6}{9}+\dfrac{14}{18}-\dfrac{5}{6}\)
\(\dfrac{9}{20}-\dfrac{3}{5}:\dfrac{4}{1}\)
\(\dfrac{1}{6}+\dfrac{2}{3}\) x \(\dfrac{8}{9}\)
\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{8}{15}\\ =\dfrac{3\times6}{5\times6}+\dfrac{1\times15}{2\times15}+\dfrac{8\times2}{15\times2}\\ =\dfrac{18}{30}+\dfrac{15}{30}+\dfrac{16}{30}\\ =\dfrac{49}{30}\\ \dfrac{6}{9}+\dfrac{14}{18}-\dfrac{5}{6}\\ =\dfrac{6\times2}{9\times2}+\dfrac{14}{18}-\dfrac{5\times3}{6\times3}\\ =\dfrac{12}{18}+\dfrac{14}{18}-\dfrac{15}{18}\\ =\dfrac{11}{18}\)
\(\dfrac{9}{20}-\dfrac{3}{5}:\dfrac{4}{1}\\ =\dfrac{9}{20}-\dfrac{3}{5}\times\dfrac{1}{4}\\ =\dfrac{9}{20}-\dfrac{3}{20}\\ =\dfrac{6}{20}\\ =\dfrac{3}{10}\)
\(\dfrac{1}{6}+\dfrac{2}{3}\times\dfrac{8}{9}\\=\dfrac{1}{6}+\dfrac{16}{27}\\ =\dfrac{1\times9}{6\times9}+\dfrac{16\times2}{27\times2}\\ =\dfrac{9}{54}+\dfrac{32}{54}\\ =\dfrac{41}{54}.\)
Rút gọn rồi tính.
a) \(\dfrac{2}{3}-\dfrac{2}{6}\) b) \(\dfrac{5}{6}-\dfrac{3}{18}\) c) \(\dfrac{8}{14}-\dfrac{2}{7}\) d) \(\dfrac{12}{20}-\dfrac{2}{5}\)
a) \(\dfrac{2}{3}-\dfrac{2}{6}=\dfrac{4}{6}-\dfrac{2}{6}=\dfrac{4-2}{6}=\dfrac{2}{6}=\dfrac{1}{3}\)
b) \(\dfrac{5}{6}-\dfrac{3}{18}=\dfrac{10}{18}-\dfrac{3}{18}=\dfrac{10-3}{18}=\dfrac{7}{18}\)
c) \(\dfrac{8}{14}-\dfrac{2}{7}=\dfrac{8}{14}-\dfrac{4}{14}=\dfrac{8-4}{14}=\dfrac{4}{14}=\dfrac{2}{7}\)
d) \(\dfrac{12}{20}-\dfrac{2}{5}=\dfrac{12}{20}-\dfrac{8}{20}=\dfrac{12-8}{20}=\dfrac{4}{20}=\dfrac{1}{5}\)
\(\dfrac{2}{3}+\dfrac{5}{6}+\dfrac{9}{10}+\dfrac{14}{15}+\dfrac{20}{21}+\dfrac{27}{28}+\dfrac{35}{36}+\dfrac{44}{45}\) kết quả bằng bao nhiêu a
\(\dfrac{2}{3}+\dfrac{5}{6}+\dfrac{9}{10}+\dfrac{14}{15}+\dfrac{20}{21}+\dfrac{27}{28}+\dfrac{35}{36}+\dfrac{44}{45}\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{10}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{21}\right)+\left(1-\dfrac{1}{28}\right)+\left(1-\dfrac{1}{36}\right)+\left(1-\dfrac{1}{45}\right)\\ =8-\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\right)\\ =8-\left(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\\ =8-\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+\dfrac{2}{9.10}\right)\\ =8-2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\\ =8-2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =8-2\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=8-2.\dfrac{2}{5}=8-\dfrac{4}{5}=\dfrac{36}{5}\)
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 2\sqrt{x-2}=8$
$\Leftrightarrow \sqrt{x-2}=4$
$\Leftrightarrow x=4^2+2=18$ (tm)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
4) \(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}\) và -y+x=1
6) \(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}\)và x+y+z=6
7) 5x=4y và x.y=20
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
Chứng minh:
(\(\dfrac{99x+1}{5x^2-5}\) + \(\dfrac{1}{5+5x}\) + \(\dfrac{20}{1-x}\)) : \(\dfrac{4}{x^3y-xy}\) = -5xy
\(\left(\dfrac{99x+1}{5x^2-5}+\dfrac{1}{5+5x}+\dfrac{20}{1-x}\right):\dfrac{4}{x^3y-xy}\)
\(=\left(\dfrac{99x+1}{5\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{5\left(x-1\right)\left(x+1\right)}-\dfrac{100\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\right):\dfrac{4}{xy\left(x^2-1\right)}\)
\(=\dfrac{99x+1+x-1-100x-100}{5\left(x-1\right)\left(x+1\right)}:\dfrac{4}{xy\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-100xy}{20}=-5xy=VP\)( đpcm )
Giải Pt \(\dfrac{14}{20-6x-2x^2}+\dfrac{x^2+4x}{x^2+5x}-\dfrac{x+3}{2-x}+3=0\)
\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)
\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)
\(\Leftrightarrow5x^2+19x-30=0\)
hay \(x\in\left\{\dfrac{6}{5}\right\}\)
* Tính
a. A=\(\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)
b. B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)
\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)
=1
b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)
=1