Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kẻ lập dị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 5 2017 lúc 12:01

Chọn A

Tran Thuy Linh
Xem chi tiết
Trần Thị Liên
25 tháng 12 2017 lúc 20:34

Mk chỉ giúp phần tách thôi nha

3. A=x2-2xy+2y2+2x-10y+2033

=(x2-2xy+y2)+(y2-10y+25)+2x+2008

=(x2-2xy+y2)+(y2-10y+25)+(x2+2x+1)-x2+2007

=(x-y)2+(y-25)2+(x+1)2-x2+2007

Vì....

không bt là có đúng k đâuleuleu

Trần Thị Liên
25 tháng 12 2017 lúc 20:37

câu 2 cũng tương tự như vây nha

Lâm
Xem chi tiết
Nguyễn Hoàng Tiến
12 tháng 5 2016 lúc 21:04

Áp dụng BĐT Bunhiacopxki với 2 dãy số: x; 2y và 1;1. Ta có:

\(\left(x^2+2y^2\right)\left(1^2+1^2\right)\ge\left(x+2y\right)^2\)

\(<=>\left(x^2+2y^2\right)\times2\ge1\)

\(<=>\left(x^2+2y^2\right)\ge\frac{1}{2}\)

\(<=>P\ge\frac{1}{2}\)

Vậy GTNN của P là 1/2 <=> \(\frac{x}{1}=\frac{2y}{1}<=>x=2y\)

Thắng Nguyễn
12 tháng 5 2016 lúc 21:06

áp dụng BĐT cauchy schwarz ta có:

(x2+2y2)(1+2)\(\ge\)(x+2y)2=1

nên x2+2y2\(\ge\frac{1}{3}\)

Lâm
12 tháng 5 2016 lúc 21:14

Làm sao mà sử dụng dc yếu tố x +2y=1 ấy

dilan
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:11

\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự và cộng lại:

\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)

Hoang Tran
Xem chi tiết
Akai Haruma
12 tháng 8 2021 lúc 1:15

Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.

dinh huong
Xem chi tiết
Minh Hiếu
20 tháng 8 2021 lúc 16:31

2+ 6/ căn x -1

Lê Thị Hoàng Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2019 lúc 2:04