làm sao chứng minh 5^2+5^3+5^4+...+5^2017 chia hết cho 37 các bạn giúp mk với
chứng minh rằng
a, 942^60-351^37 chia hết cho 5
b, 99^5-98^4+97^3-96^2 chia hết cho 2 và 5
các bạn giúp mình làm bài này với mình đang cần gấp
Cho A = 1^1 + 2^5 + 3^9 + 4^13 + ... + 504^2013 + 505^2017. Chứng minh A chia hết cho 5. Giúp mk với
Ta có :
\(A=1+2^5+4^{13}+.....+504^{2013}+505^{2017}\)
\(A=1^{4.0+1}+2^{4.1+1}+3^{4.2+1}+....+505^{4503+1}+505^{4504+1}\)
Gọi các số nhân lên cùng 4 ở hàng số mũ là x
Xét các mũ ,ta có :
Chữ số tận cùng A sẽ là tổng của :
\(1+2+3+...+504+505\)
\(=\dfrac{\left(505+1\right).505}{2}=\dfrac{255530}{2}=127765\)
Tổng đó có chữ số tận cùng là 5
⇒⇒ Chữ số tận cùng của A là 5
Vậy chữ số tận cùng của A là 5
Chứng tỏ rằng:
\(^{5^{2017}+5^{2016}+5^{2015}}\) chia hết cho 31
Giúp mk với các bạn
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)
52017+52016+52015
5^2015.(5^2+5+1)
5^2015.31 chia hết cho 31
=> Tổng trên chia hết cho 31
cho S = 5+52+53+54+...+596
CHỨNG MINH RẰNG : S CHIA HẾT CHO 10 NHA CÁC BẠN !
GIÚP MK NHA!
\(S=5+5^2+5^3+5^4+...+6^{96}\)
sử dụng phương pháp nhóm ta được:
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)
sử dụng phương pháp phân tích đa thức thành nhân tử ta được:
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)
\(S=30+5^2\cdot30+...+5^{94}\cdot30\)
\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)
vậy => đpcm
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
k nha chúc bạn học giỏiChứng minh:
4^2018 - 1 chia hết cho 3
5^2019 - 1 chia hết cho 4
4^2019 + 1 chia hết cho 5
5^2017 + 1 chia hết cho 6
giúp mk với nha mn
a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
a, Ta có: 4≡1(mod3)4≡1(���3)
⇒42018≡1(mod3)⇒42018≡1(���3)
⇒42018−1⋮3⇒42018−1⋮3
b, Ta có: 5≡1(mod4)5≡1(���4)
⇒52019≡1(mod4)⇒52019≡1(���4)
⇒52019−1⋮4⇒52019−1⋮4
c, 4≡−1(mod5)4≡−1(���5)
⇒42019≡−1(mod5)⇒42019≡−1(���5)
⇒42019+1⋮5⇒42019+1⋮5
d, 5≡−1(mod6)5≡−1(���6)
⇒52017≡−1(mod6)⇒52017≡−1(���6)
⇒52017+1⋮6
Chứng minh rằng :
C = 5+5^2+5^3+5^4+...+5^3000 chia hết cho 31 . Làm ơn giúp mk . Sắp thi tháng rùi
Ta có:C=5+52+53+...+53000
=(5+52+53)+(54+55+56)+...+(52998+52999+53000)
=5(1+5+52)+54(1+5+52)+...+52998(1+5+52)
=5(1+5+25)+54(1+5+25)+...+52998(1+5+25)
=5.31+54.31+...+52998.31
Vì 31 chia hết cho 31 nên 5.31+54.31+...+52998.31 chia hết cho 31
hay C chia hết cho 31
Vậy C chia hết cho 31.
Chứng minh rằng : S=5+52+53+54+...+52012+52013 chia hết cho 31
Các bạn làm nhanh giúp mình nhé !
S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ
S=5(1+5+5^2)+.....+5^2011(1+5+5^2)
S=5.31+.....+5^2011.31
S=31(5+....+5^2011) chia hết cho 31(đpcm)
Tick nhé.
Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy
ĐỀ CÓ SAI K !?
CÓ THÌ SỬA
K THÌ MÌNH NGHĨ CHO
\(S=5+5^2+5^3+.....+5^{2013}\)
\(=\left(5+5^2+5^3\right)+.....+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(=\left(5.1+5.5+5.25\right)+....+\left(5^{2011}.1+5^{2011}.5+5^{2011}.25\right)\)
\(=31.5+31.5^4+....+31.5^{2011}\)
= 31.(5+54+....+52011)
S chia hết cho 31
Cho A=942^6 - 351^37
B=99^5 - 98^4 + 97^3 - 96^2
Chứng minh Achia hết cho 5; B chia hết cho 2 và 5
giúp mình nhanh nhé mình sẽ tick cho bạn
Chứng minh rằng :
1) B=1+5+5^2+5^3+5^4+...+5^101 chia hết cho 6
2)C=81^3+3^14+27^5 là bội của 37
3)D=2+2^2+2^3+...+2^60 chia hết cho 3;7;15
4)A=1+3+3^2+3^3+...+3^1991
Giúp mik nhé các bn
1) \(B=1+5+5^2+5^3+....+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)
\(=\left(1+5\right)+5^2\left(1+5\right)+....+5^{100}\left(1+5\right)\)
\(=\left(1+5\right)\left(1+5^2+....+5^{100}\right)\)
\(=6\left(1+5^2+...+5^{100}\right)\)\(⋮6\)
2) \(C=81^3+3^{14}+27^5\)
\(=\left(3^4\right)^3+3^{14}+\left(3^3\right)^5\)
\(=3^{12}+3^{14}+3^{15}\)
\(=3^{12}.\left(1+3^2+3^3\right)\)
\(=3^{12}.37\)\(⋮37\)
3) \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{59}\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)\(⋮3\)
chứng minh chia hết cho 7, 15 bạn làm tương tự
chia hết cho 7: bạn nhóm 3 số thành nhóm
chia hết cho 15: bạn nhóm 4 số thành nhóm