a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
a, Ta có: 4≡1(mod3)4≡1(���3)
⇒42018≡1(mod3)⇒42018≡1(���3)
⇒42018−1⋮3⇒42018−1⋮3
b, Ta có: 5≡1(mod4)5≡1(���4)
⇒52019≡1(mod4)⇒52019≡1(���4)
⇒52019−1⋮4⇒52019−1⋮4
c, 4≡−1(mod5)4≡−1(���5)
⇒42019≡−1(mod5)⇒42019≡−1(���5)
⇒42019+1⋮5⇒42019+1⋮5
d, 5≡−1(mod6)5≡−1(���6)
⇒52017≡−1(mod6)⇒52017≡−1(���6)
⇒52017+1⋮6