Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Khánh
Xem chi tiết

a: Gọi O là trung điểm của MC

=>O là tâm đường tròn đường kính MC

Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>MN\(\perp\)NC tại N

=>MN\(\perp\)CB tại N

Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)

nên ABNM là tứ giác nội tiếp

=>A,B,N,M cùng thuộc một đường tròn

b: ABNM là tứ giác nội tiếp

=>\(\widehat{ANM}=\widehat{ABM}\)

=>\(\widehat{ANM}=\widehat{ABI}\)(1)

Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)

nên CIAB là tứ giác nội tiếp

=>\(\widehat{ABI}=\widehat{ACI}\)

mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)

nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)

=>NM là phân giác của góc ANI

pé
Xem chi tiết
Đỗ Lan
Xem chi tiết
Trương Đình Thắng
Xem chi tiết
phạm ngọc mai
Xem chi tiết
đặng tấn sang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 9:07

a:

góc ABA'=góc ACA'=1/2*180=90 độ

Xét ΔBOA' có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBOA' cân tại B

mà OB=OA'

nên ΔBOA' đều

=>góc A'BH=30 độ

=>góc ABC=60 độ

Xét ΔACB có

AH vừa là đường cao, vừa là trung tuyến

góc ABC=60 độ

=>ΔACb đều

b: ΔOBA' đều có BH là đường cao

nên BH=OA'*căn 3/2=R*căn 3/2

=>CH=R*căn 3/2

=>BC=R*căn 3

=>DC=căn DB^2-BC^2=R

DH=căn DC^2+CH^2=R*căn 7/2

Aurora
Xem chi tiết
Trần Minh Hoàng
27 tháng 5 2021 lúc 21:23

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.

Trần Minh Hoàng
27 tháng 5 2021 lúc 21:23

undefined

An Thy
27 tháng 5 2021 lúc 21:31

a)Vì BM là đường kính \(\Rightarrow\angle MNB=90\) mà \(\angle CAM=90\Rightarrow \) CAMN nội tiếp

b) Vì CAMN nội tiếp \(\Rightarrow \angle MCN=\angle MAN\)

Xét \(\Delta BMC\) và \(\Delta BNA\):Ta có: \(\left\{{}\begin{matrix}\angle BCM=\angle BAN\\\angle CBAchung\end{matrix}\right.\)

\(\Rightarrow\)\(\dfrac{BM}{BN}=\dfrac{MC}{NA}\)

c) gọi P' là trung điểm CM \(\Rightarrow\) P' là tâm của (AMNC)

Ta có: \(\left\{{}\begin{matrix}\angle P'AM=\angle P'MA\\\angle P'NO=\angle P'NM+\angle MNO=\angle P'MN+\angle OMN\end{matrix}\right.\)

\(\Rightarrow \angle P'AM+\angle P'NO=\angle P'MA+\angle P'MN+\angle OMN=180\)

\(\Rightarrow \) P'NOA nội tiếp \(\Rightarrow P\equiv P'\Rightarrow\) P là trung điểm CM

Xét \(\Delta CMB:\)Ta có: P,O lần lượt là trung điểm CM,MB

\(\Rightarrow \) PO là đường trung bình \(\Delta CMB\Rightarrow PO=\dfrac{1}{2}BC\) cố định

Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 20:52

a: Gọi I là trung điểm của CM

Xét (I) có

ΔCDM nội tiếp

CM là đường kính

Do đó: ΔCDM vuông tại D

=>góc CDM=góc CDB=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: Xét ΔCAB có CO/CB=CM/CA=1/2

nên OM//AB

=>OM vuông góc AC tại M

=>OM là tiếp tuyến của (I)

Vu nguyen
31 tháng 8 2023 lúc 21:04

a) Để chứng minh A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh tứ giác ABCD là tứ giác nội tiếp. Ta có:

- Góc BAD = góc BAC (cùng chắn cung BC)

- Góc BCD = góc BCA (cùng chắn cung BA)

Do đó, góc BAD + góc BCD = góc BAC + góc BCA = 90 độ (vì tam giác ABC vuông tại A)

Suy ra, tứ giác ABCD là tứ giác nội tiếp.

 

b) Để chứng minh OM là tiếp tuyến của đường tròn đường kính MC, ta cần chứng minh OM vuông góc với MC. Ta có:

- Góc OMB = góc ONB (cùng chắn cung OB)

- Góc ONB = góc MNB (do tam giác MNB vuông tại N)

- Góc MNB = góc MCB (do tam giác MCB vuông tại C)

- Góc MCB = góc ACB (do tam giác ABC vuông tại A)

Do đó, góc OMB = góc ACB

Suy ra, OM vuông góc với MC.

Vậy OM là tiếp tuyến của đường tròn đường kính MC.

NGUYỄN THỊ PHƯƠNG NHUNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 19:30

a: góc ADB=1/2*180=90 độ

=>AD vuông góc BC

góc AEC=góc ADC=90 độ

=>AEDC nội tiếp

b: ΔOAF cân tại O

mà OC là đường cao

nên OC là phân giác

Xét ΔOAC và ΔOFC có

OA=OF

góc AOC=góc FOC

OC chung

=>ΔOAC=ΔOFC

=>góc OFC=90 độ

=>CF là tiếp tuyến của (O)

grace chu
Xem chi tiết