Tính và so sánh \(\sqrt{a^2}\) và |a| trong mỗi trường hợp sau:
a) a = 3; b) a = –3.
So sánh hai số a và b trong mỗi trường hợp sau:
a) a, b là hai số dương và |a| < |b|;
b) a, b là hai số âm và |a| < |b|
a) Khi a, b là hai số dương:
|a| = a; |b| = b
Khi đó, |a| < |b| , tức là a < b
Vậy a < b
b) Khi a, b là hai số âm:
|a| = - a; |b| = - b
Khi đó, |a| < |b| , tức là - a < - b hay a > b
Vậy a > b
a: |a|<|b|
mà a,b dương
nên a<b
b: a,b là hai số âm
|a|<|b|
Do đó: a>b
So sánh a và 2020 trong những trường hợp sau:
a) a > 2021
b) a < 2000
a) Ta có: a > 2021 mà 2021 > 2020 nên a > 2020
b) Ta có a < 2000 mà 2000 < 2020 nên a < 2020
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
a. AB = a, AH = \(\dfrac{a\sqrt{3}}{2}\)
b. BC = 2a, HB = \(\dfrac{1}{4}BC\)
c. AB = a, CH = \(\dfrac{3}{2}a\)
d. CA = \(a\sqrt{3}\), AH = \(\dfrac{a\sqrt{3}}{2}\)
Giúp mình với ạ, mình cảm ơn trước.
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
Tìm góc a, \(0^o\le a\le180^o\) trong mỗi trường hợp sau:
a) sin a = 1/2
b) cos a = 0
c) tan a = \(-\sqrt{3}\)
a) Để tìm góc a khi sin a = 1/2, ta sử dụng bảng giá trị của sin trong khoảng từ 0° đến 180°. Ta thấy rằng sin a = 1/2 tại góc 30° và góc 150°. Vậy, trong trường hợp này, có hai giá trị của góc a là 30° và 150°. b) Để tìm góc a khi cos a = 0, ta sử dụng bảng giá trị của cos trong khoảng từ 0° đến 180°. Ta thấy rằng cos a = 0 tại góc 90°. Vậy, trong trường hợp này, giá trị của góc a là 90°. c) Để tìm góc a khi tan a = -√3, ta sử dụng bảng giá trị của tan trong khoảng từ 0° đến 180°. Ta thấy rằng tan a = -√3 tại góc 120°. Vậy, trong trường hợp này, giá trị của góc a là 120°. Tóm lại, trong các trường hợp đã cho: a) sin a = 1/2: a = 30° và 150°. b) cos a = 0: a = 90°. c) tan a = -√3: a = 120°.
Tìm hai số u, v trong mỗi trường hợp sau:
a) u + v = \(3\sqrt{2}\) và u.v =4
b) u - v = -2 và u.v = 80
c) \(u^2+v^2\) = 13 và u.v = 16
a) Vì \(u+v=3\sqrt{2}\) và uv=4
nên u,v là hai nghiệm của phương trình: \(x^2-3\sqrt{2}x+4=0\)
\(\Delta=\left(-3\sqrt{2}\right)^2-4\cdot1\cdot4=18-16=2>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3\sqrt{2}-\sqrt{2}}{2}=\sqrt{2}\\x_2=\dfrac{3\sqrt{2}+\sqrt{2}}{2}=2\sqrt{2}\end{matrix}\right.\)
Vậy: \(u=\sqrt{2};v=2\sqrt{2}\)
So sánh x và y trong mỗi trường hợp sau:
a) x − 2 3 ≤ y − 2 3 ; b) − 3 − x > − y − 3
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
Tìm hai số u,v trong mỗi trường hợp sau:
a) u+v = 29 và u.v = 198
b) u+v = \(3\sqrt{2}\) và u.v = 4
c) u-v = -2 và u.v = -80
d) \(u^2+v^2=13\) và u.v = 6
a) Vì u+v=29 và uv=198 nên u,v là hai nghiệm của phương trình:
\(x^2-29x+198=0\)
\(\Leftrightarrow x^2-18x-11x+198=0\)
\(\Leftrightarrow x\left(x-18\right)-11\left(x-18\right)=0\)
\(\Leftrightarrow\left(x-18\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=11\end{matrix}\right.\)
Vậy: u=18; v=11
Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong mỗi trường hợp sau:
a) \(\overrightarrow a = ( - 3;1),\;\overrightarrow b = (2;6)\)
b) \(\overrightarrow a = (3;1),\;\overrightarrow b = (2;4)\)
c) \(\overrightarrow a = ( - \sqrt 2 ;1),\;\overrightarrow b = (2; - \sqrt 2 )\)
a)
\(\overrightarrow a .\overrightarrow b = ( - 3).2 + 1.6 = 0\)
\( \Rightarrow \overrightarrow a \bot \overrightarrow b \) hay \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\).
b)
\(\left\{ \begin{array}{l}\overrightarrow a .\overrightarrow b = 3.2 + 1.4 = 10\\|\overrightarrow a |\, = \sqrt {{3^2} + {1^2}} = \sqrt {10} ;\;\,|\overrightarrow b |\, = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \end{array} \right.\)
\(\begin{array}{l} \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^o}\end{array}\)
c) Dễ thấy: \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương do \(\frac{{ - \sqrt 2 }}{2} = \frac{1}{{ - \sqrt 2 }}\)
Hơn nữa: \(\overrightarrow b = \left( {2; - \sqrt 2 } \right) = - \sqrt 2 .\left( { - \sqrt 2 ;1} \right) = - \sqrt 2 .\overrightarrow a \;\); \( - \sqrt 2 < 0\)
Do đó: \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng.
\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\)
Chú ý:
Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:
+ \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\): nếu \(\overrightarrow a .\overrightarrow b = 0\)
+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương:
\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {0^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng
\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng
Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).
Không sử dụng máy tính cầm tay, hãy so sánh các số sau:
a) \(\sqrt {42} \) và \(\sqrt[3]{{51}}\)
b) \({16^{\sqrt 3 }}\) và \({4^{3\sqrt 2 }}\)
c) \({(0,2)^{\sqrt {16} }}\) và \({\left( {0,2} \right)^{\sqrt[3]{{60}}}}\)
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)