Tìm GTNN của các biểu thức sau:
a) P= \(\left(x-2y\right)^2-\left(y-2012\right)^{2014}\)
b) Q= \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2015\)
các bạn giải giúp mình bài này nha:
Tìm GTNN của các biểu thức sau:
a) P= \(\left(x-2y\right)^2\)+\(\left(y-2012\right)^{2014}\)
b) Q= \(\left(x+y-3\right)^4+\)\(\left(x-2y\right)^2+2015\)
ĐTV sai òi
GTNN cảu P = 0 tại y = 2012 ; x = 4018
GTNN của P = 2015 khi y= 1 ; x = 2
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
= \(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
= \(2x^2-4xy+\dfrac{15}{4}y^2\)
b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
= \(x^2-4x+4+x^2+6x+9-2x^2+2\)
= \(2x+15\)
Bài 1: Tính giá trị của biểu thức:
\(A=\left(x^{2013}+x^{2012}+.....+x^2+x+1\right)\) Tại x=2014
Bài 2: Tính giá trị của biểu thức : Tại \(x=\frac{3}{5};y=-0,2\)
\(B=\left(2^2+15^{12}+8^4+19^9\right)\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\)
tính giá trị biểu thức:
A= \(\frac{x^2\left(x^2+2y\right)\left(x^2-2y\right)\left(x^8+2y^8\right)}{x^{16}+2y^{16}}\) với x=4 và y=8
B= \(\frac{\left(a^{10}+b^{10}\right)\left(a^{100}+b^{100}\right)\left(3a^2+b\right)\left(a^{1000}+b^{1000}\right)}{a^{2012}+b^{2012}}\) tại a=-2, b=-12
Thực hiện các phép nhân đơn thức sau:
a) \(\left( {4{x^3}} \right).\left( { - 6{x^3}y} \right)\) b) \(\left( { - 2y} \right).\left( { - 5x{y^2}} \right)\) c) \({\left( { - 2a} \right)^3}.{\left( {2ab} \right)^2}\)
`a)`
`4x^3 * (-6x^3y)`
`= 4*(-6) * (x^3*x^3) * y`
`= -24x^6y`
`b)`
`(-2y)*(-5xy^2)`
`= (-2)*(-5)*x*(y*y^2)`
`= 10xy^3`
`c)`
`(-2a)^3 * (2ab)^2`
`= (-8a^3) * (4a^2b^2)`
`= (-8*4)*(a^3*a^2)*b^2`
`= -32a^5b^2`
a) \(4x^3\cdot\left(-6x^3y\right)\)
\(=\left(4\cdot-6\right)\cdot\left(x^3\cdot x^3\right)\cdot y\)
\(=-24x^6y\)
b) \(\left(-2y\right)\cdot\left(-5xy^2\right)\)
\(=\left(-2\cdot-5\right)\cdot\left(y\cdot y^2\right)\cdot x\)
\(=10xy^3\)
c) \(\left(-2a\right)^3\cdot\left(2ab\right)^2\)
\(=-8a^3\cdot4a^2b^2\)
\(=\left(-8\cdot4\right)\cdot\left(a^3\cdot a^2\right)\cdot b^2\)
\(=-32a^5b^2\)
cho x+2y và 2x+y là 2 số thực dương khác 2.tìm Min của biểu thức:
\(P=\frac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\frac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(2y+x-2\right)^2}-3\left(x+y\right)\)
Cho các số thực x,y,z thỏa mãn: x+2y+3z=0 và 2xy+6yz+3zx=0. Tính giá trị của biểu thức:
S=\(\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Giúp mik vs gấp quá !