Câu hỏi cua bn
a) x^2 + 4x + 3
b) - x - y^2 + x^2 - y
c) x^2 - 3x + 2
Bài 1: Tính:
a) x^2-9/2x+6 : 3-x/2
b) 2x/x-y - 2y/x-y
c) x+15/x^2-9 + 2/x+3
d)x+y/2x+2y - x-y/2x+2y - y^2+x^2/y^2-x^2
Bài 2: Rút gọn:
a) x^3-x/3x+3
b) x^2+3xy/x^2-9y^2
Bài 3: Thực hiện phép tính:
a) x/x-3 + 9-6x/x^2-3x
b) 6x-3/x : 4x^2-1/3x^2
Câu hỏi: Quy đồng các phân thức sau:
a)3x+1/6xy^4 ; x^2-5/4x^2y^3
b) 7/2x(x+3) ; 5/3x(x+1)
c) 7x-3/2x^2+6c ; 5-3x/x^2-9
Nãy ảnh bị lỗi nên em mới phải đánh máy ah:(!
\(\left\{{}\begin{matrix}\dfrac{3x+1}{6xy^4}\\\dfrac{x^2-5}{4x^2y^3}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\dfrac{2x\left(3x+1\right)}{12x^2y^4}\\\dfrac{3y\left(x^2-5\right)}{12x^2y^4}\end{matrix}\right.\)
Khoanh tròn vào chữ cái đứng trước câu trả lời đúng
Câu 1: Kết quả phép tính bằng?
a,6x^2-1
B. 6 x-1
C.6x^2-2x
D.3x^3-2x
Câu 2: Kết quả phép tính 12x^6y^4:3x^2y bằng?
A. 4x^3y^3
B. 4x^4y^3
C.
D.
Câu 3: Đa thức 3x+9y được phân tích thành nhân tử là?
A. 3(x+y)
B. 3(x+6 y)
C. 3 x y
D. 3(x+3 y)
Câu 4: Hình thang có độ dài hai đáy là 6cm và 14 cm. Vây độ dài đường đường trung bình của hình thang đó là?
A. 20 cm
B. 3cm
C. 7 cm
D. 10 cm
Câu 5: Hình nào sau đây vừa có tâm đối xứng, vừa có trục đối xứng?
A. Hình bình hành
B. Hình thoi
C. Hình thang vuông
D. Hình thang cân
Câu 6: Tứ giác có bốn góc bằng nhau thì mỗi góc bằng?
A. 900
B. 1800
C. 600
D. 3600
Câu 7: Đa thức x^3+8 được phân tích thành nhân tử là?
a, (x-2) (x^2+2x+4)
b, (x-8) (x^2+16x+64)
c, (x+2) (x^2-2x+4)
d, (x+8) (x^2-16x+64)
Câu 8: Đa thức 4x^2y-6xy^2+8y^3 có nhân tử chung là?
A. 2y
B. 2xy
C. y
D. xy
\(2,B\\ 3,D\\ 4,D\\ 5,B,C\\ 6,A\\ 7,C\\ 8,A\)
Rút gọn các biểu thức sau:
a/ \(\left(3x-1\right)^2-2\left(2-5x\right)-2\left(x^2^{^{ }}+x-1\right)\left(x-\dfrac{1}{2}\right)\)
b/\(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
c/\(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
d/\(\left(3a-1\right)^2+2\left(9a^2-1\right)\left(3a+1\right)\)
e/\(\left(3x-4\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
MK CÂNG GẤP Ạ AI NHANH MK SẼ VOTE Ạ
b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)
\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)
\(=-x^2+18xy\)
c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
\(=\left(2a-3b\right)^2-16c^2\)
\(=4a^2-12ab+9b^2-16c^2\)
bài 2: Thu gọn rồi tính giá trị
A=5x(x^2-3)+x^2(7-5x)-7x tại x= -3
B=x^2(x^2-y^2)+y^2(x^2+y^2) tại x= -3; y=-2
Bài 3 :
c;5x^2-3x(x+2)
b;3x^2y(2x^2-y)-4x^2(4x^2-y^2)
c) xy^2.(x-xy)-x(x=y)+yx(2x^2-2xy)
Giúp mình vs ạ, gấp =(; tối hết hạn
Bài 2: a) Để tính giá trị của A = 5x(x^2-3) + x^2(7-5x) - 7x tại x = -3, ta thay x = -3 vào biểu thức và tính toán: A = 5(-3)((-3)^2-3) + (-3)^2(7-5(-3)) - 7(-3) = 5(-3)(9-3) + 9(7+15) + 21 = -15(6) + 9(22) + 21 = -90 + 198 + 21 = 129
Vậy giá trị của A tại x = -3 là 129.
Bài 3: a) Để rút gọn và tính giá trị của biểu thức c = 5x^2-3x(x+2), ta thay x = -3 vào biểu thức và tính toán: c = 5(-3)^2 - 3(-3)(-3+2) = 5(9) - 3(9)(-1) = 45 - 27 = 18
Vậy giá trị của c tại x = -3 là 18.
b) Để rút gọn và tính giá trị của biểu thức b = 3x^2y(2x^2-y) - 4x^2(4x^2-y^2), ta thay x = -3 và y = -2 vào biểu thức và tính toán: b = 3(-3)^2(-2)(2(-3)^2-(-2)) - 4(-3)^2(4(-3)^2-(-2)^2) = 3(9)(-2)(2(9)-2) - 4(9)(4(9)-4) = -54(18-2) - 36(36-4) = -54(16) - 36(32) = -864 - 1152 = -2016
Vậy giá trị của b tại x = -3 và y = -2 là -2016.
c) Để rút gọn và tính giá trị của biểu thức c = xy^2(x-xy) - x(x=y) + yx(2x^2-2xy), ta thay x = -3 và y = -2 vào biểu thức và tính toán: c = (-3)(-2)^2((-3)-(-3)(-2)) - (-3)(x=(-3)) + (-2)(-3)(2(-3)^2-2(-3)(-2)) = (-3)(4)(-3+6) - (-3)(x=(-3)) + (-2)(-3)(18-12) = (-3)(4)(3) - (-3)(x=(-3)) + (-2)(-3)(6) = (-12)(3) + (-3)(-3) + (-2)(-3)(6) = -36 + 9 + 36 = 9
Vậy giá trị của c tại x = -3 và y = -2 là 9.
2:
a: \(A=5x^3-15x+7x^2-5x^3-7x=7x^2-22x\)
Khi x=-3 thì A=7(-3)^2+22*3
=63+66
=129
b: \(B=x^4-x^2y^2+x^2y^2+y^4=x^4+y^4\)
Khi x=-3 và y=-2 thì B=(-3)^4+(-2)^4
=81+16
=97
Bài 3 yêu cầu là gì em?
Bài 2:
\(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x\\ =5x^3-15x+7x^2-5x^3-7x\\ =\left(5x^3-5x^3\right)+7x^2-\left(15x+7x\right)\\ =7x^2-22x\\ Thay:x=-3.vào.A.thu.gọn:A=7x^2-22x=7.\left(-3\right)^2-22.\left(-3\right)=63+66=129\\ Vậy:A=129.tại.x=-3\\ ---\\ B=x^2\left(x^2-y^2\right)+y^2\left(x^2+y^2\right)\\ =x^4-x^2y^2+x^2y^2+y^4=x^4+y^4\\ Thay.x=-3.và.y=-2.vào.B.thu.gọn:B=x^4+y^4=\left(-3\right)^4+\left(-2\right)^4=81+16=97\\ Vậy:B=97.khi.x=-3;y=-2\)
Bài 1:
a) 7x –12 = 5x + 3
b) 2(3x –5) –7(x + 1) = 2
c) (1 –3x)^2= (4x –3)^2
d) (2x + 3)(4x –2) –2(2x + 1)^2= 12
Bài 2:
Cho biểu thứcA = (5x –3y + 1)(7x + 2y –2)
a) Tìm x sao cho với y = 2 thì A = 0
b) Tìm y sao cho với x = -2 thì A = 0
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
1, (a - b)^2 (2a - 3b) - (b - a)^2 (3a - 5b) + (a + b)^2 (a - 2b)
2, x^4 - 4(x^2 + 5) - 25
3, (2 - x)^2 + (x - 2)(x + 3) - (4x^2 - 1)
4, (4x^2 - y^2) - 8(x - ay) - 4(4a^ - 1)
5, 16(xy + 6)^2 - (4x^2 + y^2 - 25)^2
6, (x + y - 2z)^2 + (x + y + 2z)^2 - 16z^2
7,(ax + 3y)^2 - (1 - 6a)(x^2 + y^2) + (3x - ay)^2
dài quá, làm từ từ nhé
1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)
\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\left(a-2b\right)\)
2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)
3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)
\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2-2x+1\right)\left(2x+1\right)\)
\(=\left(-x-1\right)\left(2x+1\right)\)
4, câu này đề thiếu
5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)
\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)
\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)
\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)
\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)
6, \(\left(x+y-2z\right)^2+\left(x+y+2z\right)^2-16z^2\)
\(=\left(x+y-2z\right)^2+\left(x+y+2z-4z\right)\left(x+y+2z+4z\right)\)
\(=\left(x+y-2z\right)^2+\left(x+y-2z\right)\left(x+y+6z\right)\)
\(=\left(x+y-2z\right)\left(x+y-2z+x+y+6z\right)\)
\(=\left(x+y-2z\right)\left(2x+2y+4z\right)\)
\(=2\left(x+y-2z\right)\left(x+y+2z\right)\)
7,\(=a^2x^2+6axy+9y^2-\left(-6ax^2-6ay^2+x^2+y^2\right)+9x^2-6axy+a^2y^2\)
\(=a^2x^2+6axy+9y^2+6ax^2+6ay^2-x^2-y^2+9x^2-6axy+a^2y^2\)
\(=a^2x^2+6ax^2+8x^2+a^2y^2+6ay^2+8y^2\)\(=x^2\left(a^2+6a+8\right)+y^2\left(a^2+6a+8\right)\)
\(=\left(x^2+y^2\right)\left(a^2+6a+8\right)\)\(=\left(x^2+y^2\right)\left(a^2+2a+4a+8\right)\)
\(=\left(x^2+y^2\right)\left[a\left(a+2\right)+4\left(a+2\right)\right]=\left(x^2+y^2\right)\left(a+2\right)\left(a+4\right)\)
Bai 1 TINH
a) x ^2 . x -2x^3
b) 6 x^2y . 3xy - 2y^2.x +y
C) 4x^2 +5x -1 .2x^3 -3x
d)-8x^3y + 2y^4 . 3xy^3 - 2x^4 +7y^4
GIUP MINH NHÀ
Thu gọn và tính giá trị biểu thức
a) A= 3x^4 + 1/3xyz - 3x^4 - 4/3xyz + 2x^2y - 6z khi x=1; y=3 và z=1/3
b) B= 4x^3 - 2/7xyz - 4x^3 - 4/3xyz + 4x^2y khi x=-1; y=2 và z=-1/2
c) C= 4x^2 + 1/2xyz - 2/3xy^2z - 5x^2yz + 3/4xyz khi x=-1; /y/=2 và z=1/2
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`