Giải hệ pt: \(\left\{{}\begin{matrix}x-y=12\\xy=20x+6y\end{matrix}\right.\)
Bài 1: Giải hệ pt
a) \(\left\{{}\begin{matrix}x-6y=17\\5x+y=23\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}40x+3y=10\\20x-7y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y-2=0\\5x-y=11\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-3y=5\\5x+2y=23\end{matrix}\right.\)
Lời giải:
Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix}
x-6y=17\\
5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=17+6y\\
5x+y=23\end{matrix}\right.\)
\(\Rightarrow 5(17+6y)+y=23\)
\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)
$x=17+6y=17+6(-2)=5$
Vậy $(x,y)=(5,-2)$
Các phần còn lại bạn giải tương tự
b) $(x,y)=(\frac{1}{4}, 0)$
c) $(x,y)=(3, 4)$
d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$
Giải hệ pt:
\(\left\{{}\begin{matrix}x-y-xy=7\\xy.\left(y-x\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-b=7\\-ab=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b+7\\ab+12=0\end{matrix}\right.\)
\(\Rightarrow\left(b+7\right)b+12=0\Leftrightarrow b^2+7b+12=0\Rightarrow\left[{}\begin{matrix}b=-3;a=4\\b=-4;a=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+4\\xy+3=0\end{matrix}\right.\)
\(\Rightarrow\left(y+4\right)y+3=0\Rightarrow y^2+4y+3=0\Rightarrow\left[{}\begin{matrix}y=-1;x=3\\y=-3;x=1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+3\\xy+4=0\end{matrix}\right.\)
\(\Rightarrow\left(y+3\right)y+4=0\Rightarrow y^2+3y+4=0\) (vô nghiệm)
Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(1;-3\right)\)
Giải hệ pt:
\(\left\{{}\begin{matrix}x-y-xy=7\\xy.\left(y-x\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) : Hệ trở thành ;
\(\left\{{}\begin{matrix}a-b=7\\ab=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\b^2+7b+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\\left(b+3\right)\left(b+4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\end{matrix}\right.\)
Với \(a=4;b=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left(y+1\right)\left(y+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Với \(a=3;b=-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\y^2+3y+4=0\end{matrix}\right.\) ( Vô nghiệm )
Vậy \(\left(x;y\right)=\left(3;-1\right)\) \(\left(x;y\right)=\left(1;-3\right)\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
a, Cộng vế theo vế hai phương trình ta được:
\(x^2+y^2+2xy+x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)
TH1: \(x+y=1\)
\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(x+y=-2\)
\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)
b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)
TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)
Đặt \(x+y=u;xy=v\)
Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)
Giải hệ pt sau:
\(\left\{{}\begin{matrix}x^2y+8x+y=12\\3xy^2+4xy=y^2+6y+4\end{matrix}\right.\)
Em cảm ơn ạ.
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3+3x=448y^3+6y\\385x^2-16y^2=96\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}3x^3-y^3=\dfrac{1}{x+y}\\x^2+y^2=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-448y^3=-3x+6y\\96=385x^2-16y^2\end{matrix}\right.\)
\(\Rightarrow96\left(x^3-448y^3\right)=\left(-3x+6y\right)\left(385x^2-16y^2\right)\)
\(\Leftrightarrow\left(x-4y\right)\left(417x^2+898xy+3576y^2\right)=0\)
\(\Leftrightarrow x-4y=0\)
\(\Leftrightarrow x=4y\)
Thế vào \(385x^2-16y^2=96\)
\(\Rightarrow...\)
b.
ĐKXĐ: \(x+y\ne0\)
\(\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=x^2+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=\left(x^2+y^2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left(3x^3-y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)\left(2x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\)...
Giải hệ PT: \(\left\{{}\begin{matrix}xy+6y\sqrt{x-1}+12y=4\\\dfrac{xy}{1+y}+\dfrac{1}{xy+y}=\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x\left(x+1\right)=a\\y\left(y+1\right)=b\end{matrix}\right.\) thì ta có:
\(\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=6\end{matrix}\right.or\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
Tới đây thì đơn giải rồi nhé
giải hệ pt \(\left\{{}\begin{matrix}x^3+xy^2-10y=0\\x^2+6y^2=10\end{matrix}\right.\)
Giair hệ pt:
\(\left\{{}\begin{matrix}x^2y+8x+y=12\\3xy^2+4xy=y^2+6y+4\end{matrix}\right.\)