Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thien Nguyen
Xem chi tiết
Akai Haruma
29 tháng 4 2021 lúc 23:55

Lời giải:

Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix} x-6y=17\\ 5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=17+6y\\ 5x+y=23\end{matrix}\right.\)

\(\Rightarrow 5(17+6y)+y=23\)

\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)

$x=17+6y=17+6(-2)=5$

Vậy $(x,y)=(5,-2)$

Các phần còn lại bạn giải tương tự

b) $(x,y)=(\frac{1}{4}, 0)$

c) $(x,y)=(3, 4)$

d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$

ITACHY
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2019 lúc 16:12

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-b=7\\-ab=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b+7\\ab+12=0\end{matrix}\right.\)

\(\Rightarrow\left(b+7\right)b+12=0\Leftrightarrow b^2+7b+12=0\Rightarrow\left[{}\begin{matrix}b=-3;a=4\\b=-4;a=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+4\\xy+3=0\end{matrix}\right.\)

\(\Rightarrow\left(y+4\right)y+3=0\Rightarrow y^2+4y+3=0\Rightarrow\left[{}\begin{matrix}y=-1;x=3\\y=-3;x=1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+3\\xy+4=0\end{matrix}\right.\)

\(\Rightarrow\left(y+3\right)y+4=0\Rightarrow y^2+3y+4=0\) (vô nghiệm)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(1;-3\right)\)

ITACHY
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
17 tháng 1 2019 lúc 16:16

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) : Hệ trở thành ;

\(\left\{{}\begin{matrix}a-b=7\\ab=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\b^2+7b+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\\left(b+3\right)\left(b+4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(a=4;b=-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left(y+1\right)\left(y+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Với \(a=3;b=-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\y^2+3y+4=0\end{matrix}\right.\) ( Vô nghiệm )

Vậy \(\left(x;y\right)=\left(3;-1\right)\) \(\left(x;y\right)=\left(1;-3\right)\)

Mai Thị Thúy
Xem chi tiết
Hồng Phúc
29 tháng 7 2021 lúc 9:46

a, Cộng vế theo vế hai phương trình ta được:

\(x^2+y^2+2xy+x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)

TH1: \(x+y=1\)

\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y=-2\)

\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)

 

Hồng Phúc
29 tháng 7 2021 lúc 10:05

b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)

TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)

Đặt \(x+y=u;xy=v\)

Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)

:vvv
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 7 2021 lúc 22:41

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-448y^3=-3x+6y\\96=385x^2-16y^2\end{matrix}\right.\)

\(\Rightarrow96\left(x^3-448y^3\right)=\left(-3x+6y\right)\left(385x^2-16y^2\right)\)

\(\Leftrightarrow\left(x-4y\right)\left(417x^2+898xy+3576y^2\right)=0\)

\(\Leftrightarrow x-4y=0\)

\(\Leftrightarrow x=4y\)

Thế vào \(385x^2-16y^2=96\)

\(\Rightarrow...\)

Nguyễn Việt Lâm
28 tháng 7 2021 lúc 22:43

b.

ĐKXĐ: \(x+y\ne0\)

\(\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=x^2+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=\left(x^2+y^2\right)^2\end{matrix}\right.\)

\(\Rightarrow\left(3x^3-y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)\left(2x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

Thế vào \(x^2+y^2=1\)...

Nue nguyen
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Hung nguyen
24 tháng 11 2017 lúc 10:07

Đặt \(\left\{{}\begin{matrix}x\left(x+1\right)=a\\y\left(y+1\right)=b\end{matrix}\right.\) thì ta có:

\(\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=6\end{matrix}\right.or\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)

Tới đây thì đơn giải rồi nhé

Anh Nguyen
Xem chi tiết
:vvv
Xem chi tiết