\(\left(\dfrac{25}{9}\right)^2\) bằng bao nhiêu vậy ạ
\(\dfrac{0,8:\left(\dfrac{4}{5}.1,25\right)}{0,64-\dfrac{1}{25}}+\dfrac{\left(1,08-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{17}}+\left(1,2.0,5\right):\dfrac{4}{5}\)
(mn giải giúp mik với ạ! iu mn nhiều![]()
![]()
![]()
\(\dfrac{\dfrac{4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}+\left(\dfrac{6}{5}\cdot\dfrac{1}{2}\right):\dfrac{4}{5}\)
\(=\dfrac{4}{5}:\dfrac{3}{5}+\dfrac{7}{4}:7+\dfrac{3}{5}:\dfrac{4}{5}\)
\(=\dfrac{4}{3}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\dfrac{7}{3}\)
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
\(log_5\left(\dfrac{1}{25}\right).log_{27}9=?\)
\(log_24.log_{\dfrac{1}{4}}2=?\)
a.c giúp em với ạ
thank trước ạ
log\(_5\)(\(\dfrac{1}{25}=log_5\left(5^{-2}\right)=-2\)
log\(_{27}9\)=log\(_{3^3}3^2\)=\(\dfrac{2}{3}\)
\(\Rightarrow\) log\(_5\dfrac{1}{25}\).\(log_{27}9\)=\(\dfrac{-4}{3}\)
\(log_24=log_22^2=2\)
\(log_{\dfrac{1}{4}}2=log_{2^{-2}}2=\dfrac{-1}{2}\)
\(\Rightarrow log_24.log_{\dfrac{1}{4}}2=-1\)
Giúp mình bài này với ạ!
\(\dfrac{\left(-3\right)^{10}x15^5}{25^3x\left(-9\right)^7}\)
Có: \(\dfrac{\left(-3\right)^{10}x15^5}{25^3x\left(-9\right)^7}=\dfrac{3^{10}.\left(3.5\right)^5x}{-\left(3^2\right)^7\left(5^2\right)^3x}\)
\(=\dfrac{3^{15}.5^5x}{-3^{14}.5^6x}\)\(=\dfrac{3^{14}.5^5\left(3x\right)}{3^{14}.5^5\left(-5x\right)}=\dfrac{3x}{-5x}=-\dfrac{3}{5}\)
Vậy...
Bài 1:
1/\(\left(-\dfrac{25}{13}\right)+\left(-\dfrac{19}{17}\right)+\dfrac{12}{13}+\left(-\dfrac{25}{17}\right)\) 6/ \(2\dfrac{2}{15}.\dfrac{9}{17}.\dfrac{3}{32}:\left(-\dfrac{3}{17}\right)\)
2/\(\dfrac{1}{2}-\left(-\dfrac{1}{3}\right)+\dfrac{1}{23}+\dfrac{1}{6}\) 7/\(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
3/\(\left(-\dfrac{3}{7}\right).\dfrac{5}{11}+\left(-\dfrac{5}{14}\right).\dfrac{5}{11}\) 8/\(\left(-\dfrac{1}{3}\right).\left(-\dfrac{15}{19}\right).\dfrac{38}{45}\)
4/\(\left(-\dfrac{5}{11}\right).\dfrac{7}{15}.\dfrac{11}{-5}.\left(-30\right)\) 9/\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{19.20}\)
5/\(\left(-\dfrac{5}{9}\right).\dfrac{3}{11}+\left(-\dfrac{13}{18}\right).\dfrac{3}{11}\) 10/\(\dfrac{1}{9.10}-\dfrac{1}{8.9}-\dfrac{1}{7.8}-......-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)
Biết x=a thoả mãn phương trình \(5\sqrt{\dfrac{2x+1}{4}}-\dfrac{1}{5}\sqrt{\dfrac{25\left(x+\dfrac{1}{2}\right)}{8}}=\dfrac{3}{2}\), khi đó giá trị của biểu thức 1-36a bằng bao nhiêu?
\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)
cho \(lim_{x->1}\dfrac{f\left(x\right)-10}{x-1}=5\) tính giới hạn \(lim_{x->1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt[]{4f\left(x\right)+9}+3\right)}\) bằng bao nhiêu ?
Chọn \(f\left(x\right)=5x+5\)
Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)
1, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
2, \(\left(5-x\right)^2=25\)
1.\(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}-x=\dfrac{3}{5}\\\dfrac{1}{3}-x=-\dfrac{3}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{15}\\x=\dfrac{14}{15}\end{matrix}\right.\)
2.\(\left(5-x\right)^2=25\Leftrightarrow\left[{}\begin{matrix}5-x=5\\5-x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
\(\sqrt{\dfrac{4}{25}}+25+\left|-\dfrac{4}{5}\right|-\dfrac{9}{5}\cdot\left(\dfrac{-1}{3}\right)^2+0,75\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{9}{5}\cdot\dfrac{1}{9}+\dfrac{3}{4}}=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{1}{5}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{3}{5}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{16+60+75}{100}}=\dfrac{\sqrt{151}}{10}\)
\(\sqrt{\dfrac{4}{25}+\left|-\dfrac{4}{5}\right|-\dfrac{9}{5}.\left(\dfrac{-1}{3}\right)^2+0,75}\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{9}{5}.\dfrac{1}{9}+\dfrac{3}{4}}=\sqrt{\dfrac{4}{25}+\dfrac{20}{25}-\dfrac{9}{45}+\dfrac{3}{4}}=\sqrt{\dfrac{24}{25}-\dfrac{9}{45}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{19}{25}+\dfrac{3}{4}}=\sqrt{\dfrac{76}{100}+\dfrac{75}{100}}=\sqrt{\dfrac{151}{100}}=\dfrac{\sqrt{151}}{10}\)
a)\(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\) b)\(\left(0,\left(3\right)+\dfrac{\text{|}-2\text{|}}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)
\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)
\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)
\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)
\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)
b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)
\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)