Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jung Linkjin
Xem chi tiết
nanako
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
Trung Nguyen
15 tháng 10 2020 lúc 22:17

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

Khách vãng lai đã xóa
Trung Nguyen
15 tháng 10 2020 lúc 22:24

cái đó phải là \(-42\log_{16x}x\) nhé bạn

Khách vãng lai đã xóa
Trung Nguyen
15 tháng 10 2020 lúc 23:41

\(\log_{\frac{x}{2}}4x^2+2\log_{\frac{x^3}{8}}2x+\log_{2x}\frac{x^4}{4}=-\frac{14}{3}\)(ĐKXĐ:x>0)

\(\Leftrightarrow2\log_{\frac{x}{2}}2x+\frac{2}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)

\(\Leftrightarrow\frac{8}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)

Xét \(\log_{2x}\frac{x^2}{2}=\log_{2x}\frac{x^2}{4}\cdot2=2\log_{2x}\frac{x}{2}+\log_{2x}2=\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\)

Thay vào phương trình ta được:

\(\frac{8}{3}\log_{\frac{x}{2}}2x+2\left(\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\right)=-\frac{14}{3}\)

Đặt \(\log_2x=a\left(a\in R\right)\)

Xét

\(\log_{\frac{x}{2}}2x=\log_{\frac{x}{2}}2+\log_{\frac{x}{2}}x=\frac{1}{\log_2\frac{x}{2}}+\frac{1}{\log_x\frac{x}{2}}=\frac{1}{\log_2x-1}+\frac{1}{1-\log_x2}=\frac{1}{a-1}+\frac{1}{1-\frac{1}{a}}=\frac{a+1}{a-1}\)

Thay vào pt ta được:

\(\frac{8}{3}\cdot\frac{a+1}{a-1}+2\left(2\cdot\frac{a-1}{a+1}+\frac{1}{a+1}\right)=-\frac{14}{3}\)

Giải ra ta được a=0 hoặc a=-23/17

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2^{-\frac{23}{17}}\end{matrix}\right.\)

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:53

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:55

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

Thảob Đỗ
Xem chi tiết
Lê Đình Hiếu
28 tháng 7 2021 lúc 9:30

\(\dfrac{1}{5}\)

-1

nguyen ngoc son
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 lúc 20:53

1.

\(A=3log_{2^2}\sqrt{a}-log_{2^{-1}}a^2+2log_{a^{\dfrac{1}{2}}}a\)

\(=3.\dfrac{1}{2}.\dfrac{1}{2}log_2a-\left(-1\right).2.log_2a+2.2.log_2a\)

\(=\dfrac{27}{4}log_2a\)

2.

\(log_{12}36=\dfrac{log_236}{log_212}=\dfrac{log_2\left(3^2.2^2\right)}{log_2\left(3.2^2\right)}=\dfrac{log_23^2+log_22^2}{log_23+log_22^2}\)

\(=\dfrac{2.log_23+2}{log_23+2}=\dfrac{2a+2}{a+2}\)

Lê Việt Hiếu
Xem chi tiết
Nguyễn Minh Nguyệt
26 tháng 3 2016 lúc 2:32

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

‎Shinkai Makotoo
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 21:24

\(log_{\sqrt{3}}\left(2x+y\right)-log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)=\left(4x^2+y^2+2xy+2\right)-3\left(2x+y\right)-2\)

\(\Leftrightarrow log_{\sqrt{3}}\left(2x+y\right)+2+3\left(2x+y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)

\(\Leftrightarrow log_{\sqrt{3}}\left(6x+3y\right)+\left(6x+3y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)

Xét hàm \(f\left(t\right)=log_{\sqrt{3}}t+t\) với \(t>0\)

\(f'\left(t\right)=\dfrac{1}{t.ln\sqrt{3}}+1>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow6x+3y=4x^2+y^2+2xy+2\)

\(\Leftrightarrow4x+y=\left(x+y-1\right)^2+1+3\left(x^2+1\right)-3\ge2\left(x+y-1\right)+6x-3\)

\(\Leftrightarrow4x+y\ge2\left(4x+y\right)-5\)

\(\Leftrightarrow4x+y\le5\)

\(\Rightarrow P=\dfrac{2x+y+6+\left(4x+y-5\right)}{2x+y+6}=1+\dfrac{4x+y-5}{2x+y+6}\le1\)

\(P_{max}=1\) khi \(x=y=1\)

Nguyễn Trinh
Xem chi tiết