Bài 3: Lôgarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

1.rút gọn A=3\(\log_4\sqrt{a}\)\(\log_{\dfrac{1}{2}}a^2\)+ 2\(\log_{\sqrt{2}}a\)

2.bt \(\log_23=a\). tính \(\log_{12}36\) theo a

Nguyễn Việt Lâm
14 tháng 1 lúc 20:53

1.

\(A=3log_{2^2}\sqrt{a}-log_{2^{-1}}a^2+2log_{a^{\dfrac{1}{2}}}a\)

\(=3.\dfrac{1}{2}.\dfrac{1}{2}log_2a-\left(-1\right).2.log_2a+2.2.log_2a\)

\(=\dfrac{27}{4}log_2a\)

2.

\(log_{12}36=\dfrac{log_236}{log_212}=\dfrac{log_2\left(3^2.2^2\right)}{log_2\left(3.2^2\right)}=\dfrac{log_23^2+log_22^2}{log_23+log_22^2}\)

\(=\dfrac{2.log_23+2}{log_23+2}=\dfrac{2a+2}{a+2}\)


Các câu hỏi tương tự
nanako
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tâm Cao
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Như Quỳnh
Xem chi tiết