Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Giáo viên Toán
4 tháng 5 2017 lúc 17:10

Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?

a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)

b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)

c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)

d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)

\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)

\(=\dfrac{1}{1+\sin x}\)

Vậy hàm số K(x) là một nguyên hàm của f(x).

Sách Giáo Khoa
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
8 tháng 12 2023 lúc 21:22

 Trước hết ta chứng minh BĐT sau: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\) (*) với \(a,b,x,y>0\). Thật vậy, (*) tương đương \(\dfrac{a^2y+b^2x}{xy}\ge\dfrac{a^2+2ab+b^2}{x+y}\)

 \(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge2abxy+a^2xy+b^2xy\)

 \(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh. ĐTXR \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

Áp dụng BĐT (*) liên tiếp, ta được:

 \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Ta có đpcm.

Phạm Duy Phát
Xem chi tiết
Học đi
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:05

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:07

2.

\(VT=a\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+b\left(\dfrac{1}{a^2}+\dfrac{1}{c^2}\right)+c\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(VT\ge\dfrac{2a}{bc}+\dfrac{2b}{ac}+\dfrac{2c}{ab}=2\dfrac{a^2+b^2+c^2}{abc}\)

\(VP=\dfrac{2\left(ab+bc+ca\right)}{abc}\)

\(\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{a^2+b^2+c^2}{abc}\)

\(\Rightarrow ab+bc+ca\ge a^2+b^2+c^2\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)

\(\Rightarrow a=b=c\)

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:13

3.

\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)

\(\Rightarrow\left(\dfrac{x^2-yz}{a}\right)^2=\left(\dfrac{y^2-xz}{b}\right)\left(\dfrac{z^2-xy}{c}\right)=\dfrac{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}{a^2-bc}\)

\(=\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}\)

Tương tự:

\(\left(\dfrac{y^2-xz}{b}\right)^2=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}\)

\(\left(\dfrac{z^2-xy}{c}\right)^2=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x}{a^2-bc}=\dfrac{y}{b^2-ac}=\dfrac{z}{c^2-ab}\Rightarrowđpcm\)

Tiểu Thang Viên (bánh tr...
Xem chi tiết
Phạm Lợi
Xem chi tiết
Trung Nguyen
3 tháng 3 2021 lúc 23:36

\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)

\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)

=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)

C=-1 ta được phương án A(ko tm câu hỏi)

C=0 ta được phương án B(ko tm câu hỏi)

C=2 ta được phương án C(ko tm câu hỏi)

=>chọn D

Nguyễn Tuấn Minh
Xem chi tiết
 Mashiro Shiina
6 tháng 11 2018 lúc 21:24

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

Diệp Kì Thiên
6 tháng 11 2018 lúc 21:18

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

TNA Atula
6 tháng 11 2018 lúc 21:28

a) 3.(ab+bc+ac)≤a2+b2+c2+2ab+2bc+2ac

<=> \(a^2+b^2+c^2-ab-bc-ac\ge0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

<=> (a-b)2+(b-c)2+(a-c)2≥0 ( luon dung voi moi a,b,c)

b) ap dung ket qua tren va vế sau bn xem bài giải của mk ở trên