Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jatsumin
Xem chi tiết
Lê Thị Hồng Vân
6 tháng 2 2018 lúc 13:00

Ta có

\(x-y=\left(by+cz\right)-\left(ax+cz\right)=by-ax\)

\(\Leftrightarrow x\cdot\left(a+1\right)=y\cdot\left(b+1\right)\)

\(y-z=\left(ax+cz\right)-\left(ax+by\right)=cz-by\)

\(\Leftrightarrow z\cdot\left(c+1\right)=y\cdot\left(b+1\right)\)

\(x-z=\left(by+cz\right)-\left(ax+by\right)=cz-ax\)

\(\Leftrightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)\)

\(\Rightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)\)

Đặt \(x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)=k\)

\(\Rightarrow\left\{{}\begin{matrix}a+1=\dfrac{k}{x}\\b+1=\dfrac{k}{y}\\c+1=\dfrac{k}{z}\end{matrix}\right.\)

Thay vào A, ta có :

\(A=\dfrac{1}{\dfrac{k}{x}}+\dfrac{1}{\dfrac{k}{y}}+\dfrac{1}{\dfrac{k}{z}}\)

\(=\dfrac{x}{k}+\dfrac{y}{k}+\dfrac{z}{k}\)

=\(\dfrac{x+y+z}{k}\)

Vì z = ax + by; x = cz + by; y = ax + cz nen :

\(k=z\cdot\left(c+1\right)=cz+z=cz+ax+by\)

\(\Rightarrow A=\dfrac{2\cdot\left(ax+by+czz\right)}{ax+by+cz}=2\)

⇒ĐPCM

Bùi Đức Anh
Xem chi tiết
Trần Minh Hoàng
11 tháng 1 2021 lúc 22:40

Đặt \(ax^3=by^3=cz^3=k\).

Khi đó ta có:

\(VT=\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\dfrac{k}{x}+\dfrac{k}{y}+\dfrac{k}{z}}=\sqrt[3]{k\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\sqrt[3]{k}\).

\(VP=\sqrt[3]{\dfrac{k}{x^3}}+\sqrt[3]{\dfrac{k}{y^3}}+\sqrt[3]{\dfrac{k}{z^3}}=\sqrt[3]{k}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\sqrt[3]{k}\).

Từ đó ta có đpcm.

Trương Huy Hoàng
11 tháng 1 2021 lúc 22:49

Ta có: ax3 = \(\dfrac{ax^2}{\dfrac{1}{x}}\)

Tương tự ta có: ax3 = by3 = cz3 

hay \(\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\) = ax2 + by2 + cz2 (T/c dãy tỉ số bằng nhau)

\(\Rightarrow\) \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)

\(\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)  (đpcm)

Chúc bn học tốt!

....
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 17:06

Bài này hình như có lần làm rồi :))

Đặt `ax^3=by^3=cz^3=k^3`

`=>a=k^3/x^3,b=k^3/y^3,c=k^3/z^3`

`=>root{3}{a}+root{3}{b}+root{3}{c}=k/x+k/y+k/z=k(1/x+1/y+1/z)=k(1)`

`**:ax^2+by^2+cz^2=(ax^3)/x+(by^3)/y+(cz^3)/z=k^3/x+k^3/y+k^3/z=k^3(1/x+1/y+1/z)=k^3`

`=>root{3}{ax^2+by^2+cz^2}=k(2)`

`(1)(2)=>ĐPCM`

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thị Kim Anh
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
Akai Haruma
28 tháng 11 2018 lúc 11:08

Lời giải:

Đặt \(ax^3=by^3=cz^3=k^3\)

\(\Rightarrow \left\{\begin{matrix} a=\frac{k^3}{x^3}\\ b=\frac{k^3}{y^3}\\ c=\frac{k^3}{z^3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \sqrt[3]{a}=\frac{k}{x}\\ \sqrt[3]{b}=\frac{k}{y}\\ \sqrt[3]{c}=\frac{k}{z}\end{matrix}\right.\)

\(\Rightarrow \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=k\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=k(*)\)

Mặt khác theo tính chất dãy tỉ số bằng nhau:

\(k^3=ax^3=by^3=cz^3=\frac{ax^2}{\frac{1}{x}}=\frac{by^2}{\frac{1}{y}}=\frac{cz^2}{\frac{1}{z}}=\frac{ax^2+by^2+cz^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=ax^2+by^2+cz^2\)

\(\Rightarrow k=\sqrt[3]{ax^2+by^2+cz^2}(**)\)

Từ $(*)$ và $(**)$ ta có đpcm.

Song Lam Diệp
Xem chi tiết
Akai Haruma
12 tháng 4 2018 lúc 23:28

Lời giải:

Ta có:

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x-y=by-ax\\ z=ax+by\end{matrix}\right.\)

\(\Rightarrow x-y+z=2by\Rightarrow b=\frac{x+z-y}{2y}\)

Hoàn toàn tương tự ta nhận được:

\(a=\frac{y+z-x}{2x};c=\frac{x+y-z}{2z}\)

Suy ra:

\(\left\{\begin{matrix} a+1=\frac{x+y+z}{2x}\\ b+1=\frac{x+y+z}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\) (ĐPCM)

My Phạm
Xem chi tiết