Tìm số nguyên n để P=\(\dfrac{n+1}{n-2}\) là số nguyên
Tìm n là số nguyên để \(\dfrac{2n-1}{n^2-1}\) cũng là số nguyên
ĐKXĐ: \(n\notin\left\{1;-1\right\}\)
Để \(\dfrac{2n-1}{n^2-1}\in Z\) thì \(2n-1⋮n^2-1\)
=>\(\left(2n-1\right)\left(2n+1\right)⋮n^2-1\)
=>\(4n^2-1⋮n^2-1\)
=>\(4n^2-4+3⋮n^2-1\)
=>\(n^2-1\inƯ\left(3\right)\)
=>\(n^2-1\in\left\{1;-1;3;-3\right\}\)
=>\(n^2\in\left\{2;0;4;-2\right\}\)
mà n là số nguyên
nên \(n^2\in\left\{0;4\right\}\)
=>\(n\in\left\{0;2;-2\right\}\)
Thử lại, ta thấy chỉ có \(n\in\left\{0;2\right\}\) thỏa mãn
Cho phân số: C = \(\dfrac{2}{n-1}\) và D = \(\dfrac{n+4}{n+1}\) trong đó n là số nguyên
a, Tìm n để C và D cùng tồn tại
b, Tìm các số nguyên n để C và D đều là các số nguyên
a: ĐKXĐ: \(n\notin\left\{1;-1\right\}\)
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
Tìm số nguyên n để phân số \(\dfrac{n-2}{n-5}\) là số nguyên
Để \(\dfrac{n-2}{n-5}\) là số nguyên thì n-2⋮n-5
n-5+3⋮n-5
n-5⋮n-5⇒3⋮n-5
n-5∈Ư(3)
Ư(3)={1;-1;3;-3}
n∈{6;4;8;2}
Có: \(\dfrac{n-2}{n-5}\) là sô nguyên ⇒ \(n-2\) ⋮ \(n-5\) . Mà \(n-5\) ⋮ \(n-5\)
⇒ 3 ⋮ \(n-5\) ⇒ \(n-5\) ∈ {1; -1; 3; -3}
⇒ \(n\) ∈ {2; 4; 6; 8}
Vậy \(n\) ∈ {2; 4; 6; 8}
Để phân số \(\dfrac{n-2}{n-5}\) là số nguyên thì \(n-2⋮n-5\)
\(\Leftrightarrow3⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Tìm các số nguyên n (với n ≠-2) để A =\(\dfrac{n}{n+2}\) là số nguyên
Để \(A = \dfrac{n}{n+2}\) là số nguyên .
=> \(n \vdots n+2\)
=> \(n-( n + 2 ) \vdots n + 2\)
=> \(-2 \vdots n + 2\) hay \(n + 2 \in\) Ư(-2 ) = { \(\pm1 ; \pm2 \) }
Lập bảng :
\(\begin{array}{|c|c|c|}\hline \text{n+2}&\text{1}&\text{-1}&\text{2}&\text{-2}\\\hline \text{n}&\text{-1}&\text{-3}&\text{0}&\text{-4}\\\hline \text{Kiểm tra }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }\\\hline\end{array}\)
Vậy \(x \in \) { \(0;-1;-3;-4\) }
Tìm số nguyên n\(\in Z\) để \(\dfrac{3n+1}{n+1}\) là số nguyên
Để 3n+1/n+1 là số nguyên thì \(3n+3-2⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{0;-2;1;-3\right\}\)
3n + 1 = (3n + 3) - 2 = 3(n + 1) - 2
3(n + 1) ⋮ n + 1
=> để (3n + 1)/(n + 1) ∈ Z <=> 2 ⋮ n + 1
<=> n + 1 ∈ Ư(2) = {±1; ±2}
=> ta có bảng:
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
vậy để (3n + 1)/(n + 1) ∈ Z thì n ∈ {-3; -2; 0; 1}
Cho biểu thức: C= \(\dfrac{n+2}{n+1}\) + \(\dfrac{n+3}{n+1}\) + \(\dfrac{n+4}{n+1}\)
Tìm n để C là số nguyên
\(C=\dfrac{n+2+n+3+n+4}{n+1}=\dfrac{3n+9}{n+1}\)
Để C là số nguyên thì \(n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Cho A = \(\dfrac{1}{n-3}\)
Tìm số nguyên n để A là 1 số nguyên.
`x in Z`
`A=1/(n-3) in Z`
`=>1 vdots n-3`
`=>n-3 in Ư(1)={1,-1}`
`+)n-3=1=>n=4(TM)`
`+)n-3=-1=>n=2(TM)`
Vậy với `n in {2,4}` thì `A in Z`
Để A là số nguyên thì \(1⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(1\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1\right\}\)
hay \(n\in\left\{4;2\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{4;2\right\}\)
Để A là số nguyên thì 1 \(⋮\)n - 3
=> n - 3 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> n \(\in\) {4 ; 2}
cho B=\(\dfrac{2n^2-4n+15}{2(n-1)^2+3} \)
a) tìm số nguyên n để B có giá trị lớn nhất
b)Tìm số nguyên n để B có giá trị là số nguyên