Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 22:19

Sửa đề: Tìm x để C đạt GTLN

 

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)

\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}< =-\dfrac{2}{2}=-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>C<=0 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Vậy: \(C_{max}=0\) khi x=0

Dương Đức Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 16:46

a: \(P=\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\)

căn x-3>=-3

=>5/căn x-3<=-5/3

=>P<=-5/3+1=-2/3

Dấu = xảy ra khi x=0

 

Dương Thanh Ngân
Xem chi tiết
santa
29 tháng 12 2020 lúc 13:05

\(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P\left(x\right)=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)

\(P\left(x\right)=x-\sqrt{x}\)

Ta có : \(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{x-\sqrt{x}}{2020\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2020\sqrt{x}}=\dfrac{\sqrt{x}-1}{2020}\)

Để \(\dfrac{P\left(x\right)}{2020\sqrt{x}}min\Leftrightarrow\dfrac{\sqrt{x}-1}{2020}min\Leftrightarrow\sqrt{x}-1\) min (vì 2020 > 0)

Lại có : \(\sqrt{x}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Min\(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{-1}{2020}\Leftrightarrow x=0\)

Bùi Anh Tuấn
Xem chi tiết
Nguyễn Đức Trí
23 tháng 8 2023 lúc 22:53

a) \(P=\dfrac{x^2-\sqrt[]{x}}{x+\sqrt[]{x}+1}-\dfrac{2x+\sqrt[]{x}}{\sqrt[]{x}}+\dfrac{2\left(x+\sqrt[]{x}-2\right)}{\sqrt[]{x}-1}\)

Điều kiện xác định \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left[\left(\sqrt[]{x}\right)^3-1\right]}{x+\sqrt[]{x}+1}-\dfrac{\sqrt[]{x}\left(2\sqrt[]{x}+1\right)}{\sqrt[]{x}}+\dfrac{2\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-1\right)\left(x+\sqrt[]{x}+1\right)}{x+\sqrt[]{x}+1}-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=\sqrt[]{x}\left(\sqrt[]{x}-1\right)-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=x-\sqrt[]{x}-2\sqrt[]{x}-1+2\sqrt[]{x}+4\)

\(\Rightarrow P=x-\sqrt[]{x}+3\)

Nguyễn Đức Trí
23 tháng 8 2023 lúc 23:12

b) \(A=\dfrac{P}{2012\sqrt[]{x}}=\dfrac{x-\sqrt[]{x}+3}{2012\sqrt[]{x}}\)\(\)

\(=\dfrac{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+3}{2012\sqrt[]{x}}\)

\(=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}{2012\sqrt[]{x}}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{\dfrac{11}{4}}{2012\sqrt[]{x}}=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\)

Ta lại có  \(\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}\ge0,\forall x\ne0\)

\(\dfrac{1}{\sqrt[]{x}}>0\Rightarrow\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{4.2012}=\dfrac{11}{8048}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{8048}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt[]{x}=1\Leftrightarrow x=1\)

Vậy \(GTNN\left(A\right)=\dfrac{11}{8048}\left(tạix=1\right)\)

Xyz OLM
24 tháng 8 2023 lúc 0:24

\(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2.\left(\sqrt{x}+2\right)\)

\(=x-\sqrt{x}+3\)

b) \(\dfrac{P}{2012\sqrt{x}}=\dfrac{x-\sqrt{x}+3}{2012\sqrt{x}}=\dfrac{\sqrt{x}}{2012}-\dfrac{1}{2012}+\dfrac{3}{2012\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}}{2012}+\dfrac{3}{2012\sqrt{x}}\right)-\dfrac{1}{2012}\)

\(\ge2\sqrt{\dfrac{\sqrt{x}.3}{2012^2\sqrt{x}}}-\dfrac{1}{2012}\) (BĐT Cauchy)

\(=\dfrac{2\sqrt{3}}{2012}-\dfrac{1}{2012}=\dfrac{2\sqrt{3}-1}{2012}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{x}}{2012}=\dfrac{3}{2012\sqrt{x}}\Leftrightarrow x=3\)(tm)

illumina
Xem chi tiết
Tô Mì
26 tháng 6 2023 lúc 10:40

Ta có : \(P=3A+2B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)

Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)

\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)

\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)

Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)

dinh huong
Xem chi tiết
dinh huong
27 tháng 8 2021 lúc 19:57

sửa lại để:P=\(\dfrac{x}{\sqrt{x}-1}\)

dinh huong
Xem chi tiết
Nott mee
Xem chi tiết
Trên con đường thành côn...
11 tháng 12 2021 lúc 10:41

Cách 1:

ĐKXĐ:\(x>0\)

Ta có:

\(A-2\sqrt{3}=\dfrac{x+3}{\sqrt{x}}-2\sqrt{3}\)

\(=\dfrac{x+3-2\sqrt{3}.\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\)

Ta có:

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{3}\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\ge0\)

\(\Leftrightarrow A-2\sqrt{3}\ge0\)\(\Leftrightarrow A\ge2\sqrt{3}\)

Vậy \(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}-\sqrt{3}=0\Leftrightarrow x=3\left(tm\right)\)

Trên con đường thành côn...
11 tháng 12 2021 lúc 10:44

Cách 2:

ĐKXĐ: \(x>0\)

Ta có:

\(A=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)

Áp dụng BĐT Cauchy ta có:

\(\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\)

\(\Leftrightarrow A\ge2\sqrt{3}\)

Vậy\(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}=\dfrac{3}{\sqrt{x}}\Leftrightarrow x=3\left(tm\right)\)

Diệu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 21:12

*Rút gọn

Ta có: \(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Ta có: \(C=x-\sqrt{x}+1\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\)

hay \(x=\dfrac{1}{4}\)

Lê Thị Thục Hiền
30 tháng 6 2021 lúc 21:17

\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)

Vậy  \(C_{min}=\dfrac{3}{4}\)

\(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\)

Áp dụng AM-GM có: \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\)

Dấu "=" xảy ra khi x=1 (ktm đk)

Suy ra dấu bằng ko xảy ra \(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2-1=1\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}< 2\) 

\(\Rightarrow N< 2\) mà \(N>0\),\(N\) nguyên

\(\Rightarrow N=1\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{5}}{2}\\\sqrt{x}=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\) (tm)

Vậy...

hâyztohehe
30 tháng 6 2021 lúc 21:18

\(\Rightarrow C=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\) * \(\Rightarrow C=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

* Ta có \(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}>0\left(1\right)\) 

Xét \(N-2=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}< 0\left(dox\ne1\right)\Rightarrow N< 2\left(2\right)\) Từ (1) và (2) \(\Rightarrow0< N< 2\). Mà N nguyên nên N=1  \(\Rightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\Rightarrow2\sqrt{x}=x-\sqrt{x}+1\Leftrightarrow x-3\sqrt{x}+1=0\)

\(\Delta=9-4=5\Rightarrow\) pt có 2 nghiệm phân biệt: \(x_1=\dfrac{\sqrt{5}+3}{2}\left(TM\right);x_2=\dfrac{3-\sqrt{5}}{2}\left(TM\right)\)