Cách 1:
ĐKXĐ:\(x>0\)
Ta có:
\(A-2\sqrt{3}=\dfrac{x+3}{\sqrt{x}}-2\sqrt{3}\)
\(=\dfrac{x+3-2\sqrt{3}.\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\)
Ta có:
\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{3}\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\ge0\)
\(\Leftrightarrow A-2\sqrt{3}\ge0\)\(\Leftrightarrow A\ge2\sqrt{3}\)
Vậy \(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}-\sqrt{3}=0\Leftrightarrow x=3\left(tm\right)\)
Cách 2:
ĐKXĐ: \(x>0\)
Ta có:
\(A=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)
Áp dụng BĐT Cauchy ta có:
\(\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\)
\(\Leftrightarrow A\ge2\sqrt{3}\)
Vậy\(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}=\dfrac{3}{\sqrt{x}}\Leftrightarrow x=3\left(tm\right)\)