Cho phương trình \(cos^3x+sin^3x=sin2x+sinx+cosx\). Tính tổng các nghiệm của phương trình trong [0;2018\(\pi\)]
Giải phương trình:
1,\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
2,\(|cosx-sinx|+2sin2x=1\)
3,\(2sin2x-3\sqrt{6}|sinx+cosx|+8=0\)
4,\(cosx+\dfrac{1}{cosx}+sinx+\dfrac{1}{sinx}=\dfrac{10}{3}\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
3.
\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)
...
Giải phương trình: Sin^3x + cos^3x - sinx - cosx = cos2x
\(sin^3x+cos^3x-sinx-cosx=cos2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)-\left(sinx+cosx\right)-\left(cos^2x-sin^2x\right)\)\(=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(sinx+cosx\right)-\left(cosx+sinx\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx-cosx-sinx.cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\sinx-cosx-sinx.cosx=0\left(2\right)\end{matrix}\right.\)
TH1: (1)\(\Leftrightarrow\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\)\(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
TH2: Đặt \(t=sinx-cosx\) ;\(t\in\left(-2;2\right)\)
\(\Rightarrow\dfrac{t^2-1}{2}=-sinx.cosx\)
Pt (2)\(\Rightarrow t+\dfrac{t^2-1}{2}=0\)\(\Leftrightarrow t^2+2t-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\left(tm\right)\\t=-1-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1+\sqrt{2}\)\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=-\sqrt{2}+1\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1-\sqrt{2}}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\\x=\dfrac{-\pi}{4}-arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\end{matrix}\right.\)(\(k\in\)\(Z\))
Vậy...
Cho phương trình: cosx+sinx=1+sin2x+cos2x. Nghiệm của phương trình có dạng x 1 = a π + k π x 2 = ± b π + k 2 π b > 0 . Tính tổng a + b
A. 1 12
B.3
C. 7 π 12
D. π 4
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
1. Cos² 3x = 1
2.Sinx = 1 - cos²x
3.Tìm nghiệm € (0;2x) của phương trình cos - 2x + sinx=0
4.Sin2x + sinx = 0
5.căn 2 cos (x+pi/3) = 1
1: =>sin^2(3x)=0
=>sin 3x=0
=>3x=kpi
=>x=kpi/3
2:
\(sinx=1-cos^2x=sin^2x\)
=>\(sin^2x-sinx=0\)
=>sin x(sin x-1)=0
=>sin x=0 hoặc sin x=1
=>x=pi/2+k2pi hoặc x=kpi
4:
sin 2x+sin x=0
=>sin 2x=-sin x=sin(-x)
=>2x=-x+k2pi hoặc 2x=pi+x+k2pi
=>x=pi+k2pi hoặc x=k2pi/3
5: =>cos(x+pi/3)=1/căn 2
=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi
=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi
Giaỉ các phương trình lượng giác sau:
1. sin(sinx)=0
2. sin(cosx)=0
3. \(\sqrt{3}\sin-\cos x=2cos3x\)
4. \(\sin2x=sin\left(2x-\dfrac{\pi}{2}\right)\)
5. \(4\cos\left(3\pi-2x\right)=\sqrt{2}\)
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ
1.
\(sin\left(sinx\right)=0\)
\(\Leftrightarrow sinx=k\pi\) (1)
Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)
\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)
Thế vào (1)
\(\Rightarrow sinx=0\Rightarrow x=n\pi\)
2.
\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)
Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)
\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\)
\(\Rightarrow\) Không tồn tại k thỏa mãn
Pt vô nghiệm
Tìm nghiệm của phương trình: \(sin^3x+cos^3x=4\left(sinx+cosx\right)\) trong khoảng \(\left(0;\pi\right)\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=4\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(-3-\frac{1}{2}sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx+sinx=0\\sin2x=-6\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow cosx=-sinx=cos\left(\frac{\pi}{2}+x\right)\)
\(\Rightarrow x=-\frac{\pi}{2}-x+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
\(0\le-\frac{\pi}{4}+k\pi\le\pi\Rightarrow k=1\)
\(\Rightarrow x=\frac{3\pi}{4}\)
giải các phương trình sau:
1) \(\sqrt{3}sin^2x+\left(1-\sqrt{3}\right)sinxcosx-cos^2x+1-\sqrt{3}=0\)
2) \(9sin^2x-30sinxcosx+25cos^2x=25\)
3) \(sin2x-2sin^2x=2cos2x\)
4) \(sin^3x-cos^3x=sinx+cosx\)
5)\(4\left(sin^3x+cos^3x\right)=sinx+cosx\)
mik lm biếng quá mik chỉ nói cách làm thôi nha bạn
1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)
đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))
2) cx làm cách tương tự chia 2 vế cho cos^2x
3) giữ vế trái bung vế phải ra
\(sin2x-2sin^2x=2-4sin^22x\)
đặt t = sin2x (-1=<t=<1)
4) đẩy sinx cosx qua trái hết
\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)
\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)
\(-cos\left(sinxcosx+cos^2x+1\right)=0\)
cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))
5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]
khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2
làm đi là ra à
Tính tổng S là tổng các nghiệm thuộc đoạn 0 , 2 π của phương trình: sin 2 x + 9 π 2 - 3 . cos x - 15 π 2 = 1 + 2 . sin x