Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
11. Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)
Vậy \(A=\dfrac{3^{128}-1}{2}.\)
Rút gọn biểu thức:
A=1 + 1/2 + 1/22 + 1/32 + ..... + 1/22012
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Sửa đề: 1/32=1/23
Giải:
A=1+1/2+1/22+1/23+..1/22012
2A=2+1+1/2+1/22+...+1/22011
2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)
A=2-22012
Chúc bạn học tốt!
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1
Rút gọn biểu thức:
A=\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`
`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`
`A=[2\sqrt{3}]/2=\sqrt{3}`
\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)
\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)
\(A=\dfrac{2\sqrt{3}}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A\sqrt{3}\)
\(A=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
\(A=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A=\sqrt{3}\)
Rút gọn biểu thức:
A = \(\dfrac{1}{2+\sqrt{3}}\) + \(\dfrac{1}{2-\sqrt{3}}\)
Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuô Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF . ng tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF .
yggucbsgfuyvfbsudy
Rút gọn biểu thức:
A = \([(32)^{\dfrac{2}{3}}]^{\dfrac{-2}{5}}\)
B= \(\dfrac{x^{-2}+y^{-2}}{x^{-1}+y^{-1}}\)
C = \((a^{\dfrac{1}{3}}-b^{\dfrac{2}{3}})(a^{\dfrac{2}{3}}+a^{\dfrac{1}{3}}×b^{\dfrac{4}{3}}+b^{\dfrac{4}{9}})\)
D = \((x+y^\dfrac{3}{2}÷\sqrt{x})^\dfrac{2}{3}÷[\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}]^\dfrac{2}{3}\)
E = \([\dfrac{1}{x^{\dfrac{1}{2}}-4x^{\dfrac{-1}{2}}}-\dfrac{2\sqrt[3]{x}}{x\sqrt[3]{x}-4\sqrt[3]{x}}]^{-2}-\sqrt{x^2+8x+16}\)
Rút gọn biểu thức:
a) 3\(\sqrt{32}-2\sqrt{2}+\sqrt{50}\)
mai mk thi rùi cầu cho các bạn trai xinh gái đẹp giúp mk với huhu
Rút gọn biểu thức:A=1+1/2+1/22+1/23+...+1/22012
Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
\(2A=1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013}-1}{2^{2012}}\)
Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)
Rút gọn biểu thức:A=1+1/2 +1/22+1/23+...+1/22012
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)
=>A=\(\frac{2^{2013}-1}{2^{2012}}\)