Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Hưng Đạo
Xem chi tiết
Ngoc Anh Thai
15 tháng 5 2021 lúc 0:49

\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)

Vậy \(A=\dfrac{3^{128}-1}{2}.\)

Nguyễn Trúc
Xem chi tiết
Nguyễn Trúc
27 tháng 4 2021 lúc 14:23

a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/6+ 1/72 +1/82 < 1

b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1

Sửa đề: 1/32=1/23

Giải:

A=1+1/2+1/22+1/23+..1/22012

2A=2+1+1/2+1/22+...+1/22011

2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)

A=2-22012

Chúc bạn học tốt!

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:08

undefined

Nguyễn Thị Kim Ngân
Xem chi tiết
2611
18 tháng 5 2022 lúc 22:35

`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`

`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`

`A=[2\sqrt{3}]/2=\sqrt{3}`

Vương Hương Giang
18 tháng 5 2022 lúc 22:41

\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)

\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)

\(A=\dfrac{2\sqrt{3}}{3-1}\)

\(A=\dfrac{2\sqrt{3}}{2}\)

\(A\sqrt{3}\)

Bé Cáo
18 tháng 5 2022 lúc 22:45

\(A=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)

\(A=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}\)

\(A=\dfrac{2\sqrt{3}}{2}\)

\(A=\sqrt{3}\)

Võ Phạm Hồng Linh
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 11 2021 lúc 13:37

undefined

pham hack
Xem chi tiết
Phạm Phúc Trí
29 tháng 3 2022 lúc 15:06

yggucbsgfuyvfbsudy

Khách vãng lai đã xóa
Phạm Minh Dương
30 tháng 3 2022 lúc 19:54

????????

Khách vãng lai đã xóa
Nguyễn Hải Vân
Xem chi tiết
Lan Anh
Xem chi tiết
Lan Anh
3 tháng 1 2021 lúc 14:10

mai mk thi rùi cầu cho các bạn trai xinh gái đẹp giúp mk với huhu

ひまわり(In my personal...
3 tháng 1 2021 lúc 14:20

undefined

thanh vu
Xem chi tiết
Phùng Minh Quân
26 tháng 2 2018 lúc 19:04

Ta có : 

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(2A=1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

\(A=\frac{2^{2013}-1}{2^{2012}}\)

Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)

hoang le
Xem chi tiết
Ác Mộng
10 tháng 6 2015 lúc 8:18

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)

=>A=\(\frac{2^{2013}-1}{2^{2012}}\)