Tìm cặp số thực x, y thỏa mãn điều kiện \(\sqrt{x-1} + \sqrt{3-x} = y^2 + 2\sqrt{2020y} +2022\)
tìm cặp số thực x,y thỏa mãn điều kiện:
\(\sqrt{x-1}\)+\(\sqrt{3-x}=y^2+2\sqrt{2020}y+2022\).
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)
BĐT trở thành:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)
Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)
Tương tự:...
\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)
\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)
Nên ta chỉ cần chứng minh:
\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)
Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)
Tìm cặp x,y thỏa mãn điều kiện \(\sqrt{x-3}+\sqrt{5-x}=y^2+2\sqrt{2013}x+2015\)
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
TÌM SỐ THỰC X,Y THỎA MÃN ĐIỀU KIỆN TRÊN
đưa về HĐT ấy dạng này làm nhiều trên web r`
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Giả sử x,y là các số thực dương thỏa mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)>=4\)
Tìm Min
\(P=\dfrac{x^2}{y}+\dfrac{y^2}{x}\)
\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)
\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)
\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Trước hết áp dụng BĐT: \(ab\le\dfrac{1}{4}\left(a+b\right)^2\)
Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+1+\sqrt{y}+1\right)^2\)
Mà \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\Rightarrow\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\)
Lại áp dụng tiếp: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Ta được: \(\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\)
\(\Rightarrow\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\ge2\)
Bình phương lên: \(2\left(x+y\right)\ge4\Rightarrow x+y\ge2\)
Phần cuối chắc là hoàn toàn cơ bản rồi
Cho x,y là các số thực thỏa mãn điều kiện:\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\).Tìm GTNN của biểu thức:
\(S=x^2+3xy-2y^2-8y+5\)
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????
cho các số thực x,y thỏa mãn điều kiện sau
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\)
CMR:x=y
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
Tìm tất cả các cặp số (x,y) thỏa mãn điều kiện \(2\left(\sqrt{y-4}+y\sqrt{x-4}\right)+xy\)