giải phương trình
a)\(\sqrt{16x+48}+\sqrt{x+3}=15\)
b)\(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
giải pt
a)\(\sqrt{16x+48}+\sqrt{x+3}=15\)
b) \(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
giúp tui giải bài này ik lm ơn
`a)\sqrt{16x+48}+\sqrt{x+3}=15` `ĐK: x >= -3`
`<=>4\sqrt{x+3}+\sqrt{x+3}=15`
`<=>5\sqrt{x+3}=15`
`<=>\sqrt{x+3}=3`
`<=>x+3=9<=>x=6` (t/m).
`b)\sqrt{x^2-4}-3\sqrt{x-2}=0` `ĐK: x >= 2`
`<=>\sqrt{x-2}(\sqrt{x+2}-3)=0`
`<=>[(\sqrt{x-2}=0),(\sqrt{x+2}=3):}`
`<=>[(x-2=0),(x+2=9):}<=>[(x=2(t//m)),(x=7(t//m)):}`
Giải phương trình
a) \(\sqrt{2x-5}=\sqrt{x+3}\)
b) \(\sqrt{2x^2-x+4}-2=x\)
c) \(\sqrt{1-x}=\sqrt{3x+2}\)
d) \(\sqrt{2x-3}=\sqrt{x-2}\)
e) \(\sqrt{x-2}-\sqrt{3+2x}=0\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
✱ giải pt:
a.\(\sqrt{x^2-4x+4}\)\(=5\)
⇔\(\sqrt{\left(x-2\right)^2}=5\)
⇒\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy....
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
⇔ \(4\sqrt{x+1}=16\)
⇔ \(\sqrt{x+1}=16\)
⇒ \(x+1=256\)
⇔ \(x=255\)
vậy.....
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmdk\right)\)
b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)
\(\Leftrightarrow\left|3x-2\right|=3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)
Các câu còn lại làm tương tự nhé
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
* Giải phương trình
a. \(x^2-2\sqrt{5}x+5=0\)
b. \(\sqrt{x+3}=1\)
a. \(x^2-2\sqrt{5}x+5=0\)
<=> \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=0\)
<=> \(\left(x-\sqrt{5}\right)^2=0\)
<=> \(x-\sqrt{5}=0\)
<=> \(x=\sqrt{5}\)
b. \(\sqrt{x+3}=1\) ĐK: x \(\ge-3\)
<=> x + 3 = 12
<=> x = 1 - 3
<=> x = -2 (TM)
a: Ta có: \(x^2-2x\sqrt{5}+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
d. \(\sqrt{9x^2+12x+4}=4\)
<=> \(\sqrt{\left(3x+2\right)^2}=4\)
<=> \(|3x+2|=4\)
<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow x=1\)
giải phương trình
a) 1+\(\sqrt{x^2+7x+10}\)=\(\sqrt{x+5}\)+\(\sqrt{x+2}\)
b) \(\sqrt{4x^2-2x+\dfrac{1}{4}}\)=\(4x^3\)-\(x^2\)+8x-2
a:
ĐKXĐ: \(x>=-2\)
\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)
=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)
Phương trình sẽ trở thành:
1+ab=a+b
=>ab-a-b+1=0
=>a(b-1)-(b-1)=0
=>(b-1)(a-1)=0
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)
TH1: x>=1/4
\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)
=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)
=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)
=>4x-1=0
=>x=1/4(nhận)
TH2: x<1/4
Phương trình (1) sẽ trở thành:
\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)
=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)
=>4x-1=0
=>x=1/4(loại)
* giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b.\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
a) Ta có: \(\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\left|x-3\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge-2\)
Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+\dfrac{4}{5}\cdot5\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7(thỏa ĐK)
a) \(\Leftrightarrow\left|x-3\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy:.....
b) ĐKXĐ: x ≥ -2
\(\Leftrightarrow\sqrt{9}.\sqrt{x+2}-5.\sqrt{x+2}+\dfrac{4}{5}.\sqrt{25}.\sqrt{x+2}=6\)
<=> \(\sqrt{x+2}.\left(3-5+\dfrac{4}{5}.5\right)=6\)
\(\Leftrightarrow2.\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
<=> x + 2 = 9
<=> x = 7
Tham khảo ạ:
a) Ta có: √(x−3)2=2(x−3)2=2
⇔|x−3|=2⇔|x−3|=2
⇔[x−3=2x−3=−2⇔[x=5x=1⇔[x−3=2x−3=−2⇔[x=5x=1
b) ĐKXĐ: x≥−2x≥−2
Ta có: ⇔3√x+2−5√x+2+45⋅5√x+2=6⇔3x+2−5x+2+45⋅5x+2=6
⇔2√x+2=6⇔2x+2=6
⇔x+2=9⇔x+2=9
hay x=7(thỏa ĐK)
* giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)
a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)
\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)
\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)
\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)
\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)
\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)
\(\Leftrightarrow30\sqrt{x-3}=7x+18\)
\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)
\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)
\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)
Vậy: Phương trình vô nghiệm
a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b)Đk:\(x\ge-1\)
Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=5\)
\(\Leftrightarrow x=24\left(tm\right)\)
a. \(\sqrt{\left(x+1\right)^2}\) \(=3\)
⇔ \(\left|x+1\right|=3\)
⇔ \(\left|x\right|=2\)
⇒ \(x=2\) và \(x=-2\)