Giải pt:
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
giải pt: \(\sqrt{x-2009}+\sqrt{y-2008}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Phương trình có vô số nghiệm
Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)
Giải pt : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Nhân hai vế với 2 :
2*\(\sqrt{x+2}\)*\(\sqrt{y-1}\) + 2*\(\sqrt{z-2}\) = x + y + z
<=>[ x - 2*\(\sqrt{x+1}\)] +[ (y - 1) - 2*\(\sqrt{y-1}\) + 1] + [(z - 2) - 2\(\sqrt{z-2}\) + 1 ] = 0
<=> [\(\sqrt{x-1}^2\) + [\(\sqrt{y-1}-1\)]2 + [\(\sqrt{z-2}-1\))2 = 0
=> x = 1 , y = 2 và z = 3
Kết quả thì đúng nhưng bước 1, 2 thì tớ không hiểu lắm
giải pt
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bài 1 Giải pt
\(a,5\sqrt{2x^3+16}=2\left(x^2+8\right)\)
\(b,2\left(3x+5\right)\sqrt{x^2-9}=3x^2+2x+30\)
Bài 2: Cho x,y,z>0 thỏa mãn \(xy+yz+xz=1\) .Tính gt bt
\(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}}\)
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
zZz Cool Kid zZz ghê zữ nhen:D
a) ĐK: \(x\ge-2\) (chắc vậy:D)
Chú ý x = -2 không phải là một nghiệm. Xét x > -2
PT \(\Leftrightarrow2\left(x^2-10x-12\right)+20x+40=5\sqrt{2x^3+16}\)
\(\Leftrightarrow2\left(x^2-10x-12\right)+5\left[\left(4x+8\right)-\sqrt{2x^3+16}\right]=0\)
\(\Leftrightarrow2\left(x^2-10x-12\right)-\frac{10\left(x+2\right)\left(x^2-10x-12\right)}{4x+8+\sqrt{2x^3+16}}=0\)
\(\Leftrightarrow\left(x^2-10x-12\right)\left[2-\frac{10\left(x+2\right)}{4x+8+\sqrt{2x^3+16}}\right]=0\)
Xét cái ngoặc to: \(=\frac{2\left[\sqrt{2x^3+16}-\left(x+2\right)\right]}{4x+8+\sqrt{2x^3+16}}\)
\(=\frac{\frac{2\left(x+2\right)\left(2x^2-5x+6\right)}{\sqrt{2x^3+16}+x+2}}{4x+8+\sqrt{2x^3+16}}>0\forall x>-2\)
Do đó\(x^2-10x-12=0\Rightarrow...\)
b) Nghiệm quá xấu -> Chịu.
P/s: Em ko chắc đâu á, nhất là chỗ xét x> -2 ấy, ko biết có được ko? Với cả xử lý cái ngoặc to em ko chắc là mình nhầm chỗ nào đâu đấy nhá!
a/ \(5\sqrt{2x^3+16}=2\left(x^2+8\right)\)
\(\Leftrightarrow25\left(2x^3+16\right)=4\left(x^2+8\right)\)
\(\Leftrightarrow2x^4-50x^3+32x^2-72=0\)
\(\Leftrightarrow\left(x^2-10x-12\right)\left(2x^2-5x+6\right)=0\)
Dễ thấy \(2x^2-5x+6>0\)
\(\Rightarrow x^2-10x-12=0\)
Cho 3 số dương x,y,z thỏa mãn x + y + z = xyz. Cmr:
\(A=\frac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\frac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{xz}+\frac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}=0\)
Bạn tham khảo tại đây:
1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
Bài 1)
Ta biết ĐKXĐ:
\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)
Mặt khác \(4x+1\geq 0\Rightarrow x=2\)
Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)
Xét TH \(y-1\geq 0\) và \(y-1<0\) ta thu được \(y=\frac{3}{2}\)
Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)
Bài 2)
BĐT cần chứng minh tương đương với:
\(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\leq 1\Leftrightarrow A=\left(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\right)^2\leq 1\)
Áp dụng BĐT Cauchy - Schwarz kết hợp AM-GM:
\(A\leq \left ( \frac{z}{y}+\frac{z}{x} \right )\left ( \frac{x-z}{x}+\frac{y-z}{y} \right )=\left ( \frac{z}{x}+\frac{z}{y} \right )\left ( 2-\frac{z}{x}-\frac{z}{y} \right )\)
\(\leq \left ( \frac{\frac{z}{x}+\frac{z}{y}+2-\frac{z}{x}-\frac{z}{y}}{2} \right )^2=1\)
Do đó ta có đpcm.
Cho \(x+y+z=\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)Chứng minh: \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}=\frac{2}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
Cu Hùng lên mà lấy bài này
1 Cho Biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gon A
b,tìm GTNN của A
Tìm x để \(B=\frac{2\sqrt{x}}{A}\) là số nguyên
2 giải pt
a,\(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
b,\(\left(x-5\right)^{2010}+\left(x-6\right)^{2010}=1\)
3 Cho các số o âm x,y,z thõa mãn \(x+y+z\le3\) . Tìm GTLn \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(x+y+z\right)\)
4 giải pt nghiệm nguyên
\(4x^2-8y^3+2z^2+4x-4=0\)
5 tín số nguyên a,b t/m \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
6giải pt \(\sqrt{x^2+1-2x}+\sqrt{x^2-4x+4}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
7 Tìm GTNN , GTLN \(M=2x+\sqrt{5-x^2}\)
8 cho\(x,y,z\in(0,1]\)
CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\frac{a^2+a+1}{\left(a+1\right)}\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=\frac{2013^2}{2013}=2013\)
\(\Rightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=|x-1|+|x-2|=2013\)
giải tiếp nha
Cho x,y,z>0 thỏa mãn \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\)
Tính P=\(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
+ \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=4\Rightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
+ \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\)
+ Tương tự : \(y+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\); \(z+1=\left(\sqrt{x}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
+ \(P=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}+\sqrt{z}\right)^2\left(\sqrt{z}+\sqrt{x}\right)^2}\cdot\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=2\)