Giải phương trình sau :
a) I x-3 I < 2
b) I 2x-1 I \(\ge\)3
c) I 4x+3 I > 2x-1
d) I 2x +3 I \(\le\)5-2x
Giải phương trình:
a) I 2x-4 I = 3(1-x) khi x\(\le\)2
b) I 3x -4 I +7=-4x khi x\(\le\frac{4}{3}\)
c) I 2x+3 I=4x+1 khi x\(\ge\frac{-3}{2}\)
d) I 2x-4 I =2x-4
Bài 1: Giải các phương trình sau:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
b) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
Bài 2: Giải các phương trình sau:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)
\(1a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(x=-\frac{1}{12}\)
Vậy ................
\(b,\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow\frac{5\left(7x-1\right)}{30}+\frac{30.2x}{30}=\frac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
Vậy ....................
Bài 1:
c) \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{8.\left(x-2\right)^2}{8.3}-\frac{3.\left(2x-3\right).\left(2x+3\right)}{3.8}+\frac{4.\left(x-4\right)^2}{4.6}=0\)
\(\Leftrightarrow\frac{8.\left(x^2-4x+4\right)}{24}-\frac{3.\left(4x^2-9\right)}{24}+\frac{4.\left(x^2-8x+16\right)}{24}=0\)
\(\Rightarrow8.\left(x^2-4x+4\right)-3.\left(4x^2-9\right)+4.\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-\left(12x^2-27\right)+4x^2-32x+64=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
\(\Leftrightarrow123-64x=0\)
\(\Leftrightarrow64x=123-0\)
\(\Leftrightarrow64x=123\)
\(\Leftrightarrow x=123:64\)
\(\Leftrightarrow x=\frac{123}{64}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{123}{64}\right\}.\)
Chúc bạn học tốt!
Bài 1:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2-2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow x=12\)
Vậy phương trình có nghiệm là x = 12
đây mik giải bài 43 cho bạn nè nhu quynh
a)x^2+6x+9 b)10-25-x^2
=x^2+2.x.3+3^2 = -(x^2+10x+25)
=(x+3)^2 =-(x^2+2.x.5+5)^2
=-(5-x^2)
c)8x^3-1/8=(2x)^3-(1/2)^3=(2x-1/2).[(2x)^2+2x.1/2+(1/2)^2]=(2x-1/2)(4x^2+x+1/4)
d)1/25x^2-64y^2=(1/5x)^2-(8y)^2=(1/5x+8y)(1/5x-8y)
Bài 1:Rút gọn các biểu thức sau
a)(x^2+2xy+y^2)(x+y)
b)y(y^3+y^2-3y-2)+(y^2-2)(y^2+y-1)
c)6x^2-(2x+5)(3x-2)
d)(2x-1)(3x+1)+(3x+4)(3-2x)
e)(3x-5)(7-5x)-(5x+2)(2-3x)
Bài 2:CM giá trị của biểu thức sau k phụ thuộc vào biến
a)y(y^3+y^2-y-2)-(y^2-2)(y^2+y+1)
b)(2x+3)(4x^2-6x+9)-2(4x^3-1)
c)3x(x+5)-(3x+18)(x-1)
d)(2x+6)(4x^2-12x+36)-8x^3+5
Bài 2 :
Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)
\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)
\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .
Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)
\(=29\Rightarrow\) ko thuộc vào biến
Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\) \(\Rightarrow\) ko thuộc vào biến
Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)
\(=221\) \(\Rightarrow\) không thuộc vào biến
câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)
b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)
\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)
\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)
\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)
\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)
c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)
d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)
\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)
e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)
\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)
\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)
a)(x2 – 2xy + y2)(x – y)
= (x2 – 2xy + y2).x + (x2 – 2xy + y2).(–y)
= x2.x + (–2xy).x + y2.x + x2.(–y) + (–2xy).(–y) + y2.(–y)
= x3 – 2x2y + xy2 – x2y + 2xy2 – y3
= x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3
= x3 – 3x2y + 3xy2 – y3.
c)6x^2-(2x+5) (3x-2)
6x^2-(6X2-4x+15x-10)
6x2-6x2+4x-15x+10
-11x+10
d)(2x-1)(3x+1)+(3x+4)(3-2x)
(=)6x2-3x+2x-1+6x-6x2+12-8x
(=)-4x+11
Bài 1: Giải phương trình:
a) 11 - (2x + 3) = 3 (x - 4)
b) 5(2x - 3) - 4(5x - 7) = 19 - 2x
c) \(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
e) \(\frac{2\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
f) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
Bài 2: Giải phương trình sau bằng cách đưa về phương trình tích:
a) (x + 1)(x + 2)(x + 3) = 0
b) (x + 1)2 - 16 = 0
c) (2x - 1)2 = (x + 3)2
d) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
e) x2 - 5x + 6 = 0
f) 2x3 + 5x2 - 3x = 0
Các thầy cô giáo và bạn bè giúp em với ạ. Em cảm ơn !
Đừng bơ em, em tội nghiệp T^T ...
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
Bài 2:
a/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-3\end{matrix}\right.\)
b/
\(\left(x+1\right)^2-4^2=0\)
\(\Leftrightarrow\left(x+1-4\right)\left(x+1+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
c/
\(\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
Bài 1:Tìm GTNN của các biểu thức sau:
a. x^2 + 2x + 2
b. x^2 - 6x +9
c. 2x^2 - 6x
d. x^2 + y^2 - x + 6y + 10
Bài 2: Tìm GTLN của các biểu thức sau :
a. 4x - x^2 - 5
b. 4x - x^2 + 3
c. x - x^2
d. 2x + 4y - x^2 - y^2 + 6
e. 2x - 2x^2 - 5
Bài 1:
\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)
\(B=\left(x-3\right)^2\ge0\)
\(B_{min}=0\) khi \(x=3\)
\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)
\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)
\(A_{max}=-1\) khi \(x=2\)
\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(B_{max}=7\) khi \(x=2\)
\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)
\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)
\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)
GIẢI CÁC PHƯƠNG TRÌNH SAU :
a) 2x * ( 2x - 3 ) = ( 3 - 2x ) * ( 2 - 5x )
b) ( 2x - 7 )^2 - 6 * ( 2x - 7 ) * ( x - 3 ) = 0
\(2x\left(2x-3\right)=\left(3-2x\right)\left(2-5x\right)\\\Leftrightarrow 4x^2-6x=6-15x-4x+10x^2\\\Leftrightarrow 4x^2-10x^2-6x+15x+4x-6=0\\ \Leftrightarrow-6x^2+13x-6=0\\ \Leftrightarrow-6\left(x^2-\frac{13}{6}x+1\right)=0\\ \Leftrightarrow x^2-\frac{13}{6}x+1=0\\\Leftrightarrow x^2-\frac{2}{3}x-\frac{3}{2}x+1=0\\\Leftrightarrow x\left(x-\frac{2}{3}\right)-\frac{3}{2}\left(x-\frac{2}{3}\right)=0\\\Leftrightarrow \left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{3}{2}=0\\x-\frac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{3}{2};\frac{2}{3}\right\}\)
ai jup mk với ạ . mk cảm ơn
Giải:
a) Ta có: 2x(2x - 3) = (3 - 2x)(2 - 5x)
⇔ 4x2 - 6x = 6 - 15x - 4x + 10x2
⇔ 4x2 - 6x - 6 + 15x + 4x - 10x2 = 0
⇔ -6x2 + 13x - 6 = 0
⇔ -6x2 + 4x + 9x - 6 = 0
⇔ 3(3x - 2) - 2x(3x - 1) = 0
⇔ (3x - 2)(3 - 2x) = 0
⇔\(\left[{}\begin{matrix}3x-2=0\\3-2x=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = \(\left\{\frac{2}{3};\frac{3}{2}\right\}\)
b) (2x - 7)2 - 6(2x - 7)(x - 3) = 0
⇔ (2x - 7)[2x - 7 - 6(x - 3)] = 0
⇔ (2x - 7)(2x - 7 - 6x + 18) = 0
⇔ (2x - 7)(11 - 4x) = 0
⇔ \(\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = \(\left\{\frac{7}{2};\frac{11}{4}\right\}\)