Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dư Hạ Băng
Xem chi tiết
Qynh Nqa
Xem chi tiết
Diệu Huyền
19 tháng 2 2020 lúc 18:33

\(1a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)

\(\Leftrightarrow36x=-3\)

\(x=-\frac{1}{12}\)

Vậy ................

\(b,\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow\frac{5\left(7x-1\right)}{30}+\frac{30.2x}{30}=\frac{6\left(16-x\right)}{30}\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

Vậy ....................

Khách vãng lai đã xóa
Vũ Minh Tuấn
19 tháng 2 2020 lúc 21:32

Bài 1:

c) \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

\(\Leftrightarrow\frac{8.\left(x-2\right)^2}{8.3}-\frac{3.\left(2x-3\right).\left(2x+3\right)}{3.8}+\frac{4.\left(x-4\right)^2}{4.6}=0\)

\(\Leftrightarrow\frac{8.\left(x^2-4x+4\right)}{24}-\frac{3.\left(4x^2-9\right)}{24}+\frac{4.\left(x^2-8x+16\right)}{24}=0\)

\(\Rightarrow8.\left(x^2-4x+4\right)-3.\left(4x^2-9\right)+4.\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow8x^2-32x+32-\left(12x^2-27\right)+4x^2-32x+64=0\)

\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

\(\Leftrightarrow123-64x=0\)

\(\Leftrightarrow64x=123-0\)

\(\Leftrightarrow64x=123\)

\(\Leftrightarrow x=123:64\)

\(\Leftrightarrow x=\frac{123}{64}.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{123}{64}\right\}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Jeong Soo In
19 tháng 2 2020 lúc 17:22

Bài 1:

a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2-2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

\(\Leftrightarrow36x+3=0\)

\(\Leftrightarrow x=12\)

Vậy phương trình có nghiệm là x = 12

Khách vãng lai đã xóa
nguyen thi thao
Xem chi tiết
MINH THƯ
Xem chi tiết
Phạm Minh Hiền
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
15 tháng 8 2017 lúc 12:07

Bài 2 :

Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)

\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)

\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .

Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\Rightarrow\) ko thuộc vào biến

Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\) \(\Rightarrow\) ko thuộc vào biến

Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)

\(=221\) \(\Rightarrow\) không thuộc vào biến

Mysterious Person
16 tháng 8 2017 lúc 13:41

câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)

b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)

\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)

\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)

\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)

\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)

c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)

d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)

\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)

e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)

\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)

\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)

dương hoang
23 tháng 8 2022 lúc 15:10

a)(x2 – 2xy + y2)(x – y)

   = (x2 – 2xy + y2).x + (x2 – 2xy + y2).(–y)

   = x2.x + (–2xy).x + y2.x + x2.(–y) + (–2xy).(–y) + y2.(–y)

  = x3 – 2x2y + xy2 – x2y + 2xy2 – y3

   = x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3

   = x3 – 3x2y + 3xy2 – y3.

 

c)6x^2-(2x+5) (3x-2)

6x^2-(6X2-4x+15x-10)

6x2-6x2+4x-15x+10

-11x+10

d)(2x-1)(3x+1)+(3x+4)(3-2x)

(=)6x2-3x+2x-1+6x-6x2+12-8x

  (=)-4x+11

Nguyễn Thảo Linh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2019 lúc 21:22

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi

Bài 1:

a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)

\(\Leftrightarrow11-2x-3=3x-12\)

\(\Leftrightarrow5x=20\)

\(\Rightarrow x=4\)

b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)

\(\Leftrightarrow10x-15-20x+28=19-2x\)

\(\Leftrightarrow8x=-6\)

\(\Rightarrow x=-\frac{3}{4}\)

c/

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow x=3\)

Nguyễn Việt Lâm
3 tháng 4 2019 lúc 21:29

d/

\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow79x=158\)

\(\Rightarrow x=2\)

e/

\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)

\(\Leftrightarrow0=-121\) (vô lý)

Vậy pt vô nghiệm

f/

\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow6x=-5\)

\(\Rightarrow x=-\frac{5}{6}\)

Nguyễn Việt Lâm
3 tháng 4 2019 lúc 21:35

Bài 2:

a/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-3\end{matrix}\right.\)

b/

\(\left(x+1\right)^2-4^2=0\)

\(\Leftrightarrow\left(x+1-4\right)\left(x+1+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

c/

\(\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)

Dung Phạm
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 10 2020 lúc 0:56

Bài 1:

\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)

\(B=\left(x-3\right)^2\ge0\)

\(B_{min}=0\) khi \(x=3\)

\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)

\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 10 2020 lúc 0:59

Bài 2:

\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)

\(A_{max}=-1\) khi \(x=2\)

\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(B_{max}=7\) khi \(x=2\)

\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)

\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)

\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)

\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)

Khách vãng lai đã xóa
MINH THƯ
Xem chi tiết
Trần Hoàng Kim Yến
Xem chi tiết
Hoàng Yến
15 tháng 2 2020 lúc 9:42

\(2x\left(2x-3\right)=\left(3-2x\right)\left(2-5x\right)\\\Leftrightarrow 4x^2-6x=6-15x-4x+10x^2\\\Leftrightarrow 4x^2-10x^2-6x+15x+4x-6=0\\ \Leftrightarrow-6x^2+13x-6=0\\ \Leftrightarrow-6\left(x^2-\frac{13}{6}x+1\right)=0\\ \Leftrightarrow x^2-\frac{13}{6}x+1=0\\\Leftrightarrow x^2-\frac{2}{3}x-\frac{3}{2}x+1=0\\\Leftrightarrow x\left(x-\frac{2}{3}\right)-\frac{3}{2}\left(x-\frac{2}{3}\right)=0\\\Leftrightarrow \left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{3}{2}=0\\x-\frac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{3}{2};\frac{2}{3}\right\}\)

Khách vãng lai đã xóa
Trần Hoàng Kim Yến
15 tháng 2 2020 lúc 9:13

ai jup mk với ạ . mk cảm ơn

Khách vãng lai đã xóa
Đào Ngọc Huyền
15 tháng 2 2020 lúc 9:47

Giải:

a) Ta có: 2x(2x - 3) = (3 - 2x)(2 - 5x)

⇔ 4x2 - 6x = 6 - 15x - 4x + 10x2

⇔ 4x2 - 6x - 6 + 15x + 4x - 10x2 = 0

⇔ -6x2 + 13x ​ - 6 = 0

⇔ -6x2 + 4x + 9x - 6 = 0

⇔ 3(3x - 2) - 2x(3x - 1) = 0

⇔ (3x - 2)(3 - 2x) = 0

\(\left[{}\begin{matrix}3x-2=0\\3-2x=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = \(\left\{\frac{2}{3};\frac{3}{2}\right\}\)

b) (2x - 7)2 - 6(2x - 7)(x - 3) = 0

⇔ (2x - 7)[2x - 7 - 6(x - 3)] = 0

⇔ (2x - 7)(2x - 7 - 6x + 18) = 0

⇔ (2x - 7)(11 - 4x) = 0

\(\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = \(\left\{\frac{7}{2};\frac{11}{4}\right\}\)

Khách vãng lai đã xóa