Tìm hệ số của \({x^4}\) trong khai triển của \({(3x - 1)^5}.\)
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
tìm hệ số của \(x^3\) trong khai triển \(\left(3x-1\right)^5\)
\(\left(3x-1\right)^5=C^k_5\left(3x\right)^{5-k}\left(-1\right)^k\)
\(=C^k_53^{5-k}x^{5-k}\left(-1\right)^k\)
\(ycbt\Leftrightarrow5-k=3\Leftrightarrow k=2\)
\(\Rightarrow C^2_5.3^{5-2}.\left(-1\right)^2=270\)
Vậy hệ số của \(x^3\) trong khai triển là \(270\).
Tìm hệ số của số hạng chứa \(x^9\) trong khai triển \(\left(x+2\right)^5\left(3x+4\right)^5\)
Xét khai triển \(\left(x+2\right)^5\left(3x+4\right)^5=\sum\limits^5_{k=0}C^k_5x^k.2^{5-k}.\sum\limits^5_{l=0}C^l_5.3^lx^l.4^{5-l}\)
\(=\sum\limits^5_{k=0}\sum\limits^5_{l=0}C^k_5.C^l_5.2^{5-k}.3^l.4^{5-l}.x^{k+l}\)
Xét \(k+l=9\), ta có các bộ \(\left(k,l\right)\) sau thỏa mãn: \(\left(k,l\right)\in\left\{\left(4;5\right);\left(5;4\right)\right\}\) (do \(k,l\le5\))
\(\Rightarrow\) Hệ số của số hạng chứa \(x^9\) trong khai triển đã cho là \(C^4_5.C^5_5.2^{5-4}.3^5.4^{5-5}+C^5_5.C^4_5.2^{5-5}.3^4.4^{5-4}\) \(=4050\)
*xét khai triển (x+2)^5
= > T k+1=kC4. x^4-k
Số hạng chứa x^9=>x^5-k=x^9
<=> 5-k=9=>k=-4
-->số hạng chứa x^9 là: -4C5.x^9.2^5=
--->kết quả bạn tự tính nhé
* Cách tính như sau : thứ nhất bấm 5 rồi nhấn ship chia(:) -4 rồi nhân cho 2^5 sẽ ra kết quả
Xét khai triển (3x+4)^5
--> File: undefined
Chú ý phần trả lời cái câu (3x+4)^5 là Chữ viết bằng bút màu xanh nhé
Nếu chưa hiểu rõ thì id mình sẽ hướng dẫn kĩ hơn nhé
Tìm hệ số của x 5 trong khai triển đa thức của x ( 1 - 2 x ) 5 + x 2 ( 1 + 3 x ) 10
A. 61204
B. 3160
C. 3320
D. 61268
Hệ số của x5 trong khai triển x(1-2x)5 là (-2)4.C54
Hệ số của x5 trong khai triển x2(1+3x)10 là 33.C103
Do đó hệ số của x5 trong khai triển x(1-2x)5+ x2(1+3x)10 là
(-2)4.C54 + 33.C103= 3320
Chọn C
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Tìm hệ số của \({x^3}\) trong khai triển \({\left( {3x - 2} \right)^5}\)
Áp dụng công thức nhị thức Newton ta có
Hệ số \({x^3}\) là hệ số của số hạng \(C_5^3{\left( {3x} \right)^3}{\left( { - 2} \right)^2} = 1080{x^3}\)
Vậy hệ số của \({x^3}\) là 1080
1: hệ số của số hang chứa x8 trong khai triển \(\left(\frac{1}{x^4}+\sqrt[2]{x^5}\right)^{12}\)
2: hệ số của số hang chứa x16 trong khai triển \(\left[1-x^2\left(1-x^2\right)\right]^{16}\)
3: hệ số của số hạng chứa x5 trong khai triển \(x\left(1-2x\right)^5+x^2\left(1+3x\right)^{10}\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
Tính :
a ) Hệ số của \(x^8\) trong khai triển của \(\left(1-5x\right)^{10}\)
b ) Hệ số của \(x^4\) trong khai triển của \(\left(3x-4\right)^5\)
a ) Hệ số của hạng tử có bậc 8 trong khai triển Niutơn của \(\left(1-5x\right)^{10}\) là :
\(C^8_{10}=C^2_{10}=\frac{10.9}{1.2}=45\)
Hạng tử đó là : \(45\left(-5x\right)^8=17578125x^8\)
b ) Làm tương tự như bài a và sẽ ra đáp án là :
\(-1620x^4\).
Chúc bạn học tốt ..
Nếu câu b không hiểu hỏi mình nha ..
1) tìm hệ số của x^5 trong khai triển x(2x−1)6+(3x−1)8
2) tìm hệ số của x3 trong khai triển x(1+2x)n với n t/mAnx=12