Thực hiện phép tính \(\dfrac{1}{5}.({x^2} + 1).5\)
Thực hiện phép tính và thu gọn biểu thức:
B= \(\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
Thực hiện phép tính:
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
Thực hiện các phép tính sau:
a) \(\dfrac{{x + 2}}{{x - 1}} - \dfrac{{x - 3}}{{x - 1}} - \dfrac{{x - 4}}{{1 - x}}\)
b) \(\dfrac{1}{{x + 5}} - \dfrac{1}{{x - 5}} + \dfrac{{2x}}{{{x^2} - 25}}\)
c) \(x + \dfrac{{2{y^2}}}{{x + y}} - y\)
\(a,\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}-\dfrac{x-4}{1-x}\\ =\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}+\dfrac{x-4}{x-1}\\ =\dfrac{x+2-x+3+x-4}{x-1}\\ =\dfrac{x+1}{x-1}\)
\(b,\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{x^2-25}\\ =\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{x-5-x-5+2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2x-10}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2}{x+5}\)
\(c,x+\dfrac{2y^2}{x+y}-y\\ =\dfrac{x\left(x+y\right)+2y^2-y\left(x+y\right)}{x+y}\\ =\dfrac{x^2+xy+2y^2-xy-y^2}{x+y}\\ =\dfrac{x^2+y^2}{x+y}\)
Thực hiện phép tính sau:
a) \(2x\left(1+\dfrac{1}{2}x^2-\dfrac{5}{2}x^3\right)\)
b) \(\dfrac{4x}{2x-1}-\dfrac{7x+3}{4x^2-1}\)
a: \(=2x+x^3-5x^4\)
b: \(=\dfrac{8x^2+4x-7x-3}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{8x^2-3x-3}{\left(2x-1\right)\left(2x+1\right)}\)
Thực hiện mỗi phép tính sau:
a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2}\);
b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4}\).
a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2} = (1 + \dfrac{1}{4} - 5){x^2} = - \dfrac{{15}}{4}{x^2}\);
b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4} = (1 + 6 - \dfrac{2}{5}){y^4} = \dfrac{{33}}{5}{y^4}\).
1) Thực hiện phép tính:
(\(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}\) - \(\dfrac{5}{\sqrt{5}}\)) : \(\dfrac{1}{2+\sqrt{5}}\)
2) Tìm x , biết :
\(\sqrt{\left(2x+3\right)^2}\)=9
1)
\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{2+\sqrt{5}}\)
\(=\left[\dfrac{2\left(3-\sqrt{2}\right)}{3-\sqrt{2}}-\sqrt{5}\right]\left(2+\sqrt{5}\right)\)
\(=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(=4-5\)
\(=-1\)
\(---\)
2) \(\sqrt{\left(2x+3\right)^2}=9\)
\(\Rightarrow\left|2x+3\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=9\left(đk:x\ge-\dfrac{3}{2}\right)\\2x+3=-9\left(đk:x< -\dfrac{3}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{-6;3\right\}\)
\(Toru\)
Câu 1: Thực hiện phép tính
\(\dfrac{3}{7}x^2< 28x^5-7^3-\dfrac{14}{3}x^2-2\)
Thực hiện phép tính:
\(d,\dfrac{-5}{12}+0,75\)
\(e,\dfrac{5}{7}.12\dfrac{1}{2}-\dfrac{5}{7}.5\dfrac{1}{2}\)
\(d,-\dfrac{5}{12}+\dfrac{3}{4}=-\dfrac{5}{12}+\dfrac{9}{12}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(e,\dfrac{5}{7}.\dfrac{25}{2}-\dfrac{5}{7}.\dfrac{11}{2}=\dfrac{5}{7}.\left(\dfrac{25}{2}-\dfrac{11}{2}\right)=\dfrac{5}{7}.7=5\)
1.Thực hiện các phép tính sau :
a) \(-\dfrac{4}{3}.\dfrac{5}{12}+\dfrac{1}{3}.\dfrac{5}{12}\) b)\(3\dfrac{1}{5}+\left(\dfrac{2}{7}-\dfrac{7}{2}\right):\dfrac{3}{28}\)
2.Tìm x, biết:
a) 2x+19=\(^{5^2}\) b)\(-\dfrac{2}{9}x-\dfrac{1}{7}=\dfrac{4}{21}\)
1,
a, \(\left(\dfrac{-4}{3}+\dfrac{1}{3}\right).\dfrac{5}{12}\)=-\(\dfrac{5}{12}\)
b, \(\dfrac{16}{5}+\left(\dfrac{-45}{14}\right):\dfrac{3}{28}\)
=\(\dfrac{-2}{15}\)
2,
a, 2x+19=25
=>x=3
b, \(-\dfrac{2}{9}x=\dfrac{1}{3}\)
=>x=\(\dfrac{-3}{2}\)
Bài 1:
a) Ta có: \(\dfrac{-4}{3}\cdot\dfrac{5}{12}+\dfrac{1}{3}\cdot\dfrac{5}{12}\)
\(=\dfrac{5}{12}\cdot\left(\dfrac{-4}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{-5}{12}\)
b) Ta có: \(3\dfrac{1}{5}+\left(\dfrac{2}{7}-\dfrac{7}{2}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\left(\dfrac{4}{14}-\dfrac{49}{14}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\dfrac{-45}{14}\cdot\dfrac{28}{3}\)
\(=\dfrac{16}{5}-30=\dfrac{-134}{5}\)
1)
a) \(-\dfrac{4}{3}.\dfrac{5}{12}+\dfrac{1}{3}.\dfrac{5}{12}=\dfrac{5}{12}.\left(\dfrac{-4}{3}+\dfrac{1}{3}\right)=\dfrac{5}{12}.\left(-1\right)=-\dfrac{5}{12}\)
b) \(3\dfrac{1}{5}+\left(\dfrac{2}{7}-\dfrac{7}{2}\right).\dfrac{28}{3}=3+\dfrac{1}{5}-\dfrac{45}{14}.\dfrac{28}{3}\)
\(=3+\dfrac{1}{5}-30=-27+\dfrac{1}{5}=-\dfrac{134}{5}\)
2)
a) \(2x+19=25\)
\(2x=25-19=6\)
\(x=3\)
b) \(-\dfrac{2}{9}x-\dfrac{1}{7}=\dfrac{4}{21}\)
\(-\dfrac{2x}{9}=\dfrac{4}{21}+\dfrac{1}{7}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}.\left(-\dfrac{9}{2}\right)=-\dfrac{3}{2}\)
Thực hiện phép tính :
a. \(\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
b. \(\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)