\(\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+\dfrac{2}{7x9}+\dfrac{2}{9x11}\)
giúp mik với ạk
\(\dfrac{2}{1x3} + \dfrac{2}{3x5} + \dfrac{2}{5x7} + \dfrac{2}{7x9} + \dfrac{2}{9x11}\)
a,\((\) 1\(-\) \(\dfrac{1}{3}\)\()\)x\((\)1\(-\)\(\dfrac{2}{5}\)\()\)x\((\)1\(-\)\(\dfrac{2}{7}\)\()\)x\((\)1\(-\)\(\dfrac{2}{9}\)\()\)
b,\(\dfrac{1}{1x3}\) + \(\dfrac{1}{3x5}\) + \(\dfrac{1}{5x7}\) + \(\dfrac{1}{7x9}\)
a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)
\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)
\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)
\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)
\(=\dfrac{2}{9}\)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}\)
\(=\dfrac{9}{9}-\dfrac{1}{9}\)
\(=\dfrac{8}{9}\)
\(\dfrac{2}{1x3}\)+\(\dfrac{3}{3x5}\)+\(\dfrac{2}{5x7}\)+....+\(\dfrac{2}{99x101}\)
giúp mình với ạ
`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ
`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`
`=1/1-1/101`
`=101/101-1/101`
`=100/101`
(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)
Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\times\left(1-\dfrac{1}{101}\right)\)
\(=2\times\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)
Sửa bài ( dòng 3 đến hết bài )
... = \(2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
\(1-\dfrac{2}{3x5}-\dfrac{2}{5x7}-\dfrac{2}{7x9}-...-\dfrac{2}{19x21}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(=1-\dfrac{6}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)
Tính tổng sau:
\(\dfrac{2}{3X5}+\dfrac{2}{5X7}+\dfrac{2}{7X9}+...+\dfrac{2}{19X21}\)
`2/[3.5]+2/[5.7]+2/[7.9]+....+2/[19.21]`
`=1/3-1/5+1/5-1/7+1/7-1/9+....+1/19-1/21`
`=1/3-1/21`
`=6/21`
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)Tính nhanh:
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
Tính nhanh :\(\dfrac{2}{1X3}\) + \(\dfrac{2}{3X5}\) + \(\dfrac{2}{5X7}\) + ........ +\(\dfrac{2}{13X15}\) + \(\dfrac{2}{15X17}\) =
GHI RÕ CÁCH GIẢI RA HỘ MÌNH NHA
CẢM ƠN NHIỀU~~~~~~~
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=1-\dfrac{1}{17}\)
\(=\dfrac{16}{17}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)
\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=2-\dfrac{1}{17}\)
\(=\dfrac{33}{17}\)
2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{11}{11}-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)
a)\(\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}...+\dfrac{2}{99x101}\)
b)Cho A=\(\dfrac{n-2}{n+5}\)(neZ;n#5) Tìm n để AeZ
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
b)ĐK: \(n\ne-5\)
\(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)
Để A nguyên thì \(\dfrac{n-2}{n+5}\)phải nguyên <=> \(\dfrac{7}{n+5}\) nguyên mà n là số nguyên <=> 7 chia hết cho n+5 hay n+5 là Ư(7)
Mà Ư(7)={-1;1;-7;7}
Ta có bảng sau:
n+5 | -1 | 1 | -7 | 7 |
n | -6(TM) | -4(TM) | -12(TM) | 2(TM) |
Vậy n={-6;-4;-12;2} thì A nguyên
a. \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
b, Ta có: \(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)
Để \(A\in Z\) thì \(\dfrac{n-2}{n+5}\in Z\Rightarrow7⋮n+5\Leftrightarrow n+5\in U\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng giá trị:
\(n+5\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(-4\) | \(-6\) | \(2\) | \(-12\) |
Vậy, với \(x\in\left\{-12;-6;-4;2\right\}\) thì \(A=\dfrac{n-2}{n+5}\in Z\)
a)=1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
=100/101
b) Để A e Z
<=> n-2 chia hết n+5
=>n-2=(x+5)-7 chia hết n+5
=>n+5 e Ư(7)
=>n+5 e{7;-7;1;-1}
=>n e {2;-12;-4;-6}