giải hpt; \(\hept{\begin{cases}\sqrt{3+2.x^2.y-x^4.y^2}+x^4\left(2-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{cases}}\)
Cho hpt x+my=1 và mx+4y=2. a,Giải hpt khi m=1 b,tìm m để hpt có nghiệm duy nhất
cho hpt mx + y=3 ,2x - y = 7
a. giải hpt trên vs m=3
b. tìm m để hpt có 1 nghiệm là (3;1)
c. tìm m để hpt có 1 nghiệm là (4;1)
a) m = 3 thì hệ trở thành \(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}6x+2y=6\left(1\right)\\6x-3y=21\left(2\right)\end{cases}}\)
\(\left(1\right)-\left(2\right)\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
Từ đó suy ra \(x=2\)
Vậy với m = 3 thì hệ có 1 nghiệm (2;-3)
b) HPT không thể có nghiệm (3;1)
c) HPT có nghiệm (4;1) thì \(4m+1=3\Leftrightarrow m=\frac{1}{2}\)
Cho hpt \(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\) với m là tham số
a Giải hpt với m =3
b Giải và biện luận hpt theo m
c Tìm gtri nguyên của m để hpt có nghiệm là số nguyên
cho hpt:\(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
a. giải hpt khi m=2
b.tìm giá trị của m để hpt có nghiệm duy nhất
a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
Khi \(m=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)
Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)
Vậy...
Giải hpt
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=6\\-5x+8y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15x-10y=30\\-15x+24y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=21\\3x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+3\sqrt{y-3}=18\\9\sqrt{x}-3\sqrt{y-3}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y-3}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=19\end{matrix}\right.\)
Giải hpt
Lời giải:
$y-x=2\Leftrightarrow y=x+2$
Thay vào PT $(1)$ thì:
$\frac{1}{x}+\frac{1}{x+2}=\frac{12}{35}$
$\Leftrightarrow \frac{2x+2}{x(x+2)}=\frac{12}{35}$
$\Leftrightarrow \frac{x+1}{x(x+2)}=\frac{6}{35}$
$\Rightarrow 35(x+1)=6x(x+2)$
$\Leftrightarrow 6x^2-23x-35=0$
$\Leftrightarrow (x-5)(6x+7)=0$
$\Rightarrow x=5$ hoặc $x=\frac{-7}{6}$
Với $x=5$ thì $y=x+2=2+5=7$
Với $x=\frac{-7}{6}$ thì $y=x+2=\frac{-7}{6}+2=\frac{5}{6}$
Giải HPT
\(\Leftrightarrow\left\{{}\begin{matrix}46a+46b+14b=20,5\\a+b=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}46\left(a+b\right)+14b=20,5\\a+b=0,4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}46.0,4+14b=20,5\\a+b=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14b=2,1\\a+b=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=0,15\\a+0,15=0,4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=0,15\\a=0,25\end{matrix}\right.\)
Giải hpt:
\(\left\{{}\begin{matrix}2x+y=3\\3x+2y=2\end{matrix}\right.\)
Từ `(1)` : `2x+y=3=> y=3-2x` thế vào `(2)`
Ta được :
`3x+2(3-2x)=2`
`<=> 3x+6-4x=2`
`<=> -x =-4`
`<=>x=4`
`=> y= 3-2.4`
`<=> y= 3-6`
`<=>y=-3`
Vậy nghiệm của hệ `(x,y)` là `(4;-3)`
cho hpt \(\hept{\begin{cases}mx+y=1\\x+my=2\end{cases}}\)
a, giải hpt khi m=3
b giải và biện luận hpt theo m
c tìm m để hpt có nghiệm (x; y) thỏa mãn x-y=1
d, tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
Cho hpt: (2m-1)x +3y=5
(m+3)x -4y=1
Tìm m để hpt vô nghiệm.
Mọi người giải giúp mình với
Để hệ vô nghiệm thì
\(\dfrac{2m-1}{m+3}\ne\dfrac{5}{1}\\ \Leftrightarrow2m-1\ne5\left(m+3\right)\\ \Leftrightarrow m\ne-\dfrac{16}{3}\)
\(\dfrac{2m-1}{m+3}=\dfrac{3}{-4}\left(m\ne-3\right)\\ \Leftrightarrow-4\left(2m-1\right)=3\left(m+3\right)\\ \Leftrightarrow m=-\dfrac{5}{11}\left(tm\right)\)