Rút gọn:
a)C=/x/+x
b)D=8-/2x+8/
GIÚP MIK VỚI!!!
Rút gọn:
a)C=/x/+x
b)D=8-/2x+8/
CÁC BẠN GIÚP MIK GIẢI ĐƯỢC KHÔNG?
MIK CHỈ CÒN ĐƯỢC MỘT VÀI PHÚT NỮA THÔI...
a)
C = |x| + x = x + x = 2x
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
Bài 1:Rút gọn:
a,(x+2)(x2+4x+4)-(x-2)(x2-4x-4)-12x2-x
b,(x-2)(x+2)(x+3)-(x+1)(x2-x+1)
Ai làm đúng và nhanh giúp, mình tick liền cho ạ
a) Để rút gọn biểu thức (x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x, ta thực hiện các bước sau:
(x+2)(x^2+4x+4) = x(x^2+4x+4) + 2(x^2+4x+4)
= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8
= x^3 + 6x^2 + 12x + 8
(x-2)(x^2-4x-4) = x(x^2-4x-4) - 2(x^2-4x-4)
= x^3 - 4x^2 - 4x - 2x^2 + 8x + 8
= x^3 - 6x^2 + 4x + 8
Thay vào biểu thức ban đầu, ta có:
(x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x
= (x^3 + 6x^2 + 12x + 8 - (x^3 - 6x^2 + 4x - 12x^2 - x
= x^3 + 6x^2 + 12x + 8 - x^3 + 6x^2 - 4x - 8 - 12x^2 - x
= 8x + 8 - 4x - 8
= 4x
Vậy biểu thức đã được rút gọn thành 4x.
b) Để rút gọn biểu thức (x-2)(x+2)(x+3)-(x+1)(x^2-x+1), ta thực hiện các bước sau:
(x-2)(x+2) = x^2 - 2^2 = x^2 - 4
Thay vào biểu thức ban đầu, ta có:
(x-2)(x+2)(x+3)-(x+1)(x^2-x+1)
= (x^2 - 4)(x+3) - (x+1)(x^2-x+1)
= x^3 + 3x^2 - 4x - 12 - (x^3 + x^2 - x + x^2 - x + 1)
= x^3 + 3x^2 - 4x - 12 - x^3 - x^2 + x - x^2 + x - 1
= x^3 - x^3 + 3x^2 - x^2 - x^2 + 3x - 4x + x - 12 - 1
= 2x^2 - x - 13
Vậy biểu thức đã được rút gọn thành 2x^2 - x - 13.
Tính rồi rút gọn:
a) \(\dfrac{2}{9}+\dfrac{1}{9}\) b) \(\dfrac{5}{6}+\dfrac{1}{6}\) c) \(\dfrac{11}{8}-\dfrac{5}{8}\) d) \(\dfrac{5}{21}-\dfrac{2}{21}\)
Rút gọn:
A= \(\sqrt{6-2\sqrt{5}}\) C= \(\sqrt{19-8\sqrt{3}}\)
B = \(\sqrt{4-\sqrt{12}}\) D= \(\sqrt{5-2\sqrt{6}}\)
`A=\sqrt{6-2\sqrt{5}}`
`A=\sqrt{(\sqrt{5}-1)^2}`
`A=\sqrt{5}-1`
_________
`B=\sqrt{4-\sqrt{12}}=\sqrt{4-2\sqrt{3}}`
`B=\sqrt{(\sqrt{3}-1)^2}`
`B=\sqrt{3}-1`
_________
`C=\sqrt{19-8\sqrt{3}}`
`C=\sqrt{(4-\sqrt{3})^2}`
`C=4-\sqrt{3}`
_________
`D=\sqrt{5-2\sqrt{6}}`
`D=\sqrt{(\sqrt{3}-\sqrt{2})^2}`
`D=\sqrt{3}-\sqrt{2}`
\(A=\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5}^2-2\sqrt{5}+1^2}=\sqrt{ \left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(B=\sqrt{4-\sqrt{12}}=\sqrt{4-\sqrt{4.3}}=\sqrt{4-2\sqrt{3}}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(C=\sqrt{19-8\sqrt{3}}=\sqrt{19-2.4.\sqrt{3}}\sqrt{\sqrt{3}^2-2.4.\sqrt{3}+4^2}=\sqrt{\left(\sqrt{3}-4\right)^2}=\sqrt{3}-4\)
\(D=\sqrt{5-2\sqrt{6}}=\sqrt{5-2.\sqrt{2}.\sqrt{3}}=\sqrt{\sqrt{3}^2-2.\sqrt{2}.\sqrt{3}+\sqrt{2^2}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
Câu 3.Tính và rút gọn:
a) 5/8 - 3/8 b) 23/18 - 17/18 c) 17/24 - 1/3
a) 2/8 = 1/4
b) 6/18 = 1/3
C) 17/24 - 8/24 = 9/24 = 3/8
1. Tính rồi rút gọn:
a) (x - 7)(x + 7) - x^2
2. Tìm x:
x(x - 4) - x^2 + 8 = 0
Bài 2:
Ta có: \(x\left(x-4\right)-x^2+8=0\)
\(\Leftrightarrow x^2-4x-x^2+8=0\)
\(\Leftrightarrow-4x=-8\)
hay x=2
1)=x2-49-x2
=-49
2)=>x2-4x-x2+8=0
=>-4x+8=0
=>-4x=-8
=>x=2
Rút gọn:
a)(5x-4)(5x+4)-(5x-4)2
b)(5x+3)2-(4x-1)2-(9x2+8)
c)2(x-5y)(x+5y)+(x+5y)2+(x-5y)2
a, \(\left(5x-4\right)\left(5x+4\right)-\left(5x-4\right)^2=\left(25x^2-16\right)-\left(25x^2-40x+16\right)=40x-32\)
b,\(\left(5x+3\right)^2-\left(4x-1\right)^2-\left(9x^2+8\right)=\left(x+4\right)\left(9x-2\right)-\left(9x^2+8\right)\)
\(=9x^2+34x-8-\left(9x^2+8\right)=34x\)
c,\(2\left(x-5y\right)\left(x+5y\right)+\left(x+5y\right)^2+\left(x-5y\right)^2=\left(2x\right)^2=4x^2\)
M=\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) tìm ĐKXĐ của x
b) rút gọn M
c) tìm x để M≥-3
a: ĐKXĐ: x<>2; x<>0
b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
c: M>=-3
=>(x+1+6x)/2x>=0
=>(7x+1)/x>=0
=>x>0 hoặc x<=-1/7
Mọi người ơi giúp mik với!Cám ơn!
Rút gọn:A=1+2+2^2+2^3+2^4+....+2^10
2A=2+22+23+24+...+211
2A—A=(2+22+23+24+....+211)—(1+2+22+23+...+210)
A=211—1
Ta có A = 2A - A
= \(2\left(1+2+2^2+2^3+...+2^{10}\right)\)- \(\left(1+2+2^2+2^3+....+2^{10}\right)\)
=\(2+2^2+2^3+2^4+.....+2^{11}\)\(-1-2-2^2-2^3-...-2^{10}\)
=\(2^{11}-1\)(Các số còn lại đã trừ hết cho nhau)