Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm phương anh
Xem chi tiết
Tiêu Chiến
Xem chi tiết
Minh Nhân
20 tháng 2 2021 lúc 16:37

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)

\(b.\)

\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)

\(c.\)

\(\dfrac{x}{4}=\dfrac{y}{5}\)

\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 19:57

a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=35

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(10;25)

b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

mà y-3x=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(1;5)

c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)

nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)

mà 2x-y=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(20;25)

phương thảo nguyễn
Xem chi tiết
Nhật Văn
5 tháng 8 2023 lúc 17:58

a) \(2^x=8\)

⇔ \(2^x=2^3\)

⇒ \(x=3\)

b) \(3^x=27\)

⇔ \(3^x=3^3\)

⇒ \(x=3\)

c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)

d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)

d) \(\left(x+1\right)^3=-125\)

⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)

⇔ \(x+1=-5\)

⇔ \(x=-5-1=-6\)

Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 18:05

2:

a: (x-1,2)^2=4

=>x-1,2=2 hoặc x-1,2=-2

=>x=3,2(loại) hoặc x=-0,8(loại)

b: (x-1,5)^2=9

=>x-1,5=3 hoặc x-1,5=-3

=>x=-1,5(loại) hoặc x=4,5(loại)

c: (x-2)^3=64

=>(x-2)^3=4^3

=>x-2=4

=>x=6(nhận)

Dương Gia Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 18:44

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

le ngoc khanh thy
Xem chi tiết
Tranx
Xem chi tiết
Nguyễn Duy Khang
16 tháng 1 2021 lúc 14:30

\(a,x\left(y-2\right)=8\\ \Rightarrow x;\left(y-2\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(x\)\(-8\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)\(8\)
\(y-2\)\(-1\)\(-2\)\(-4\)\(-8\)\(8\)\(4\)\(2\)\(1\)
\(y\)\(1\)\(0\)\(-2\)\(-6\)\(10\)\(6\)\(4\)\(3\)

Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-4;0\right),\left(-2;-2\right),\left(-1;-6\right),\left(2;6\right),\left(4;4\right),\left(8;3\right)\)

 

 

 

 

 

 

 

Nguyễn Duy Khang
16 tháng 1 2021 lúc 14:36

\(b,\left(x-1\right)\left(y-2\right)=9\\ \Rightarrow\left(x-1\right),\left(y-2\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)

\(x-1\)\(-9\)\(-3\)\(-1\)\(1\)\(3\)\(9\)
\(y-2\)\(-1\)\(-3\)\(-9\)\(9\)\(3\)\(1\)
\(x\)\(-8\)\(-2\)\(0\)\(2\)\(4\)\(10\)
\(y\)\(1\)\(-1\)\(-7\)\(11\)\(5\)\(3\)

Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-2;-1\right),\left(0;-7\right),\left(2;11\right),\left(4;5\right),\left(10;3\right)\)

 

Nguyễn Duy Khang
16 tháng 1 2021 lúc 14:38

\(c,\left(x+1\right)\left(y-2\right)=15\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(15\right)=\left\{-15;-1;1;15\right\}\)

\(x+1\)\(-15\)\(-1\)\(1\)\(15\)
\(y-2\)\(-1\)\(-15\)\(15\)\(1\)
\(x\)\(-16\)\(-2\)\(0\)\(14\)
\(y\)\(1\)\(-13\)\(17\)\(3\)

 

Vậy \(\left(x;y\right)=\left(-16;1\right),\left(-2;-13\right),\left(0;17\right),\left(14;3\right)\)

 

ý phan
Xem chi tiết
Đoàn Thị Bích Châu
Xem chi tiết
Đoàn Thị Bích Châu
16 tháng 2 2020 lúc 8:33

giúp mik dzới

ý phan
Xem chi tiết
Tô Hà Thu
17 tháng 11 2021 lúc 21:10

a,Ta có:

\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)

ÁP dụng tcdtsbn , ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)

b,

\(\Rightarrow3.\left(x-1\right)=-24\)

\(\Rightarrow x-1=-8\)

\(\Rightarrow x=-7\)

ILoveMath
17 tháng 11 2021 lúc 21:11

A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)

B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)

Mai Do
Xem chi tiết

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow\left|2x-3\right|=3\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) 

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\)

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow3-\left|2x-3\right|=0\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (t/m)

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\) 

\(\Rightarrow\left[{}\begin{matrix}3-\left|2x-3\right|=1\\3-\left|2x-3\right|=-1\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\\x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\) (loại vì \(x;y\in Z\) ) 

b) \(2.y^2=3-\left|x+4\right|\) 

Vì \(-\left|x+4\right|\le0\forall x\) nên \(3-\left|x+4\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\)  

\(\Rightarrow y=0\)

\(\Rightarrow3-\left|x+4\right|=0\) 

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (t/m)

TH2:

\(y^2=1\) 

\(\Rightarrow3-\left|x+4\right|=2\) 

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\) (t/m)

c) \(25-y^2=8.\left(x-2021\right)^2\) 

Vì \(\left(x-2021\right)^2\le0\forall x\) nên \(8.\left(x-2021\right)^2\le0\forall x\) nên \(y^2\in\left\{0\right\}\) (vì \(y\in Z\) )

\(y^2=0\) 

\(\Rightarrow8.\left(x-2021\right)^2=25\) 

Vì \(\dfrac{25}{8}\) ko có p/s mũ 2 nên \(x\in\) ∅

Chúc bạn học tốt!

Vì -/2x-3/< 0 với mọi x nên 3-/2x-3/< 3 với mọi x -> y2< 3 -> y2 thuộc {0;1} ( vì y thuộc z)

Th1: y2=0-> y=0-> /2x-3/=3-> 2x-3=3 hoặc 2x-3=-3<-> x=0 hoặc x=3

Th2: y2=1-> y=+ 1-> /2x-3/=2-> 2x-3=2 hoặc 2x-3=-2 (loại vì x nguyên)

Câc câu còn lại bạn làm tương tự nhé

Chúc bạn học tốt!