cho biểu thức P = \(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\),tìm giá trị nhỏ nhất của P
Cho biểu thức $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}$ và $B=\dfrac{3 \sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{4 x+6}{x-9}$ với $x \geq 0, x \neq 9$
1. Tình giá trị của biểu thức $A$ khi $x=\dfrac{1}{9}$.
2. Rút gọn biểu thức $B$.
3. Tìm giá trị của $x$ để biểu thức $P=A: B$ đạt giá trị nhỏ nhất.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
toán lớp 9 khó zậy em đọc k hỉu 1 phân số
Có \(P=\dfrac{x-5}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
Với x < 9, tìm giá trị nhỏ nhất của biểu thức P
Với \(x< 9\) biểu thức này chỉ có max, ko có min
Để có min thì cần \(x>9\)
\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-9+4}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+4}{\sqrt{x}-3}\)
\(P=\sqrt{x}+3+\dfrac{4}{\sqrt{x}-3}=\sqrt{x}-3+\dfrac{4}{\sqrt{x}-3}+6\)
\(P\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{4}{\sqrt{x}-3}}+6=10\)
\(P_{min}=10\) khi \(\sqrt{x}-3=\dfrac{4}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}-3=2\Rightarrow x=25\)
Nếu chưa học BĐT Cô-si như cách làm trên thì:
\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-10\sqrt{x}+25+10\sqrt{x}-30}{\sqrt{x}-3}\)
\(P=\dfrac{\left(\sqrt{x}-5\right)^2+10\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}+10\)
Do \(x>9\Rightarrow\sqrt{x}>3\Rightarrow\sqrt{x}-3>0\Rightarrow\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}>0\)
\(\Rightarrow P\ge10\)
Cho biểu thức:
\(A=\left(1-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x+6}}\right)\)
a) Rút gọn A
b) Tìm x để A<0
c) Tìm giá trị nhỏ nhất của A
d) Tính giá trị nguyên của x để A nhận giá trị nguyên
Cho hai biểu thức $A = \dfrac{\sqrt x + 1}{\sqrt x+2}$ và $B = \dfrac3{\sqrt x-1} - \dfrac{\sqrt x+5}{x-1}$ với $x \ge 0,$ $x \ne 1$.
1. Tính giá trị của biểu thức $A$ khi $x = 4$.
2. Chứng minh $B = \dfrac2{\sqrt x+1}$.
3. Tìm tất cả các giá trị của $x$ để biểu thức $P = 2A.B + \sqrt x$ đạt giá trị nhỏ nhất.
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
với x=4(t/m DK)
=>\(\sqrt{x}\)=2
thay\(\sqrt{x}\)=2 vào biểu thức A ta được
A=(2+1)/(2+2)
A=3/4
P= \(\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
1 Rút gọn biểu thức P
2 Tinhd giá trị của P khi x= \(4+2\sqrt{3}\)
3 Tìm giá trị nhỏ nhất của P
Điều kiện xác định: \(x\ge0;x\ne9\)
1/ \(P=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
\(=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}-\dfrac{9\sqrt{x}-15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x-7\sqrt{x}-6+2x-\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}\)
b) Khi \(x=4+2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Ta có \(P=\dfrac{5\left(\sqrt{3}+1\right)-2}{\sqrt{3}+1+1}=\dfrac{5\sqrt{3}+3}{\sqrt{3}+2}\)
c) \(P=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-7}{\sqrt{x}+1}=5-\dfrac{7}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow P\ge5-\dfrac{7}{1}=-2\)
Dấu = xảy ra \(\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Vậy \(P_{min}=-2\) đạt được khi \(x=0\)
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
2) Tìm giá trị nhỏ nhất của A
2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)
\(=1-\dfrac{10}{\sqrt{x}+5}\)
\(\sqrt{x}+5>=5\forall x\)
=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: \(A_{min}=-1\) khi x=0
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Cho biểu thức P = \(\dfrac{3\sqrt{x}}{\sqrt{x}+1}\). Tìm giá trị nguyên nhỏ nhất của x để \(2P>\sqrt{3P}\)
2P>căn 3*P
=>4P^2>3P
=>4P^2-3P>0
=>4P-3>0 và P>0
=>4P-3>0
=>\(\dfrac{12\sqrt{x}}{\sqrt{x}+1}-3>0\)
=>\(\dfrac{12\sqrt{x}-3\sqrt{x}-3}{\sqrt{x}+1}>0\)
=>9*căn x-3>0
=>x>1/9
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1