Điều kiện xác định: \(x\ge0;x\ne9\)
1/ \(P=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
\(=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}-\dfrac{9\sqrt{x}-15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x-7\sqrt{x}-6+2x-\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}\)
b) Khi \(x=4+2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Ta có \(P=\dfrac{5\left(\sqrt{3}+1\right)-2}{\sqrt{3}+1+1}=\dfrac{5\sqrt{3}+3}{\sqrt{3}+2}\)
c) \(P=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-7}{\sqrt{x}+1}=5-\dfrac{7}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow P\ge5-\dfrac{7}{1}=-2\)
Dấu = xảy ra \(\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Vậy \(P_{min}=-2\) đạt được khi \(x=0\)