VỚI GIÁ TRỊ NÀO CỦA X THÌ MỖI CĂN THỨC SAU CÓ NGHĨA
\(\sqrt{\dfrac{1}{-1+1x}}\)
a) \(\sqrt{\dfrac{1}{3-2x}}\)
Đề bài với giá trị nào của x thì mỗi căn thức sau có nghĩa
giải chi tiết hộ mình với ạ!!!
Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa
Khi\(\dfrac{1}{3-2x}\ge0\)
\(\Leftrightarrow3-2x>0\)
\(\Leftrightarrow-2x< -3\)
\(\Leftrightarrow x>\dfrac{3}{2}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(\dfrac{x}{x-2}\)+ \(\sqrt{x-2}\) + \(\sqrt{x-2}\)\(\dfrac{x}{x^2-4}\)
Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)
\(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)
`<=>x > 2`
hmmm....đợi cô nghĩ chút<)
với giá trị nào của x thì căn sau có nghĩa:
\(\dfrac{1}{3-\sqrt{x}}\)
có nghĩa \(< =>\left[{}\begin{matrix}x>9\\0\le x< 9\end{matrix}\right.\)
Để \(\sqrt{x}\) có nghĩa <=> x \(\ge0\)
Để \(\dfrac{1}{3-\sqrt{x}}\)có nghĩa
<=> \(3-\sqrt{x}\ne0\)
<=> x \(\ne9\)
KHDK: \(x\ge0;x\ne9\)
f) \(\sqrt{\dfrac{1}{-1+x}}\)
Đề bài là với giá trị nào của x thì mỗi căn thức sau có nghĩa
giải chi tiết hộ mình với ạ !!!
Để căn thức có nghĩa thì:
\(\sqrt{\dfrac{1}{-1+x}}>0\) và \(-1+x\ne0\)
\(\Leftrightarrow x>1\)
\(ĐKXĐ\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\) ( Tử và mẫu cùng dấu )
Mà 1 > 0 \(\Rightarrow-1+x>0\)
\(\Leftrightarrow\) \(x>1\)
Với giá trị nào của x thì căn thức sau có nghĩa :
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\Leftrightarrow3x-2\ge0\)
hay \(x\ge\dfrac{2}{3}\)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) \(\sqrt{x-2\sqrt{x-1}}\)
với các giá trị nào của x thì các căn thức kia có nghĩa
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\)
Có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)
____________________
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x-3}{2x^2+1}\ge0\)
\(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow x\ge\dfrac{3}{2}\)
a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0
=>3x-2>=0
=>x>=2/3
b: ĐKXĐ: (2x-3)/(2x^2+1)>=0
=>2x-3>=0
=>x>=3/2
Với giá trị nào của x thì mỗi căn thức sau đây có nghĩa:
a) \(\sqrt{\dfrac{x}{3}}\)
b) \(\sqrt{-5x}\)
c) \(\sqrt{4-x}\)
d) \(\sqrt{3x+7}\)
e) \(\sqrt{-3x+4}\)
f) \(\sqrt{\dfrac{1}{-1+x}}\)
g) \(\sqrt{1+x^2}\)
h) \(\sqrt{\dfrac{5}{x-2}}\)
a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)
b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)
c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)
d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)
e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)
\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)
h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)
a. \(x\ge0\)
b. \(x< 0\)
c. \(x\le4\)
d. \(x\ge\dfrac{-7}{3}\)
e. \(x\le\dfrac{4}{3}\)
f. \(x>1\)
g. Mọi x
h. \(x>2\)