Tính thương và viết kết quả ở dạng phân số tối giản:
a) \(\dfrac{3}{10}:\left(\dfrac{-2}{3}\right);\)
b) \(\left(-\dfrac{7}{12}\right):\left(-\dfrac{5}{6}\right);\)
c) \(\left(-15\right):\dfrac{-9}{10}.\)
Tính tích và viết kết quả ở dạng phân số tối giản:
a) \(\dfrac{-5}{9}\cdot\dfrac{12}{35};\)
b) \(\left(-\dfrac{5}{8}\right)\cdot\dfrac{-6}{55};\)
c) \(\left(-7\right)\cdot\dfrac{2}{5};\)
d) \(\dfrac{-3}{8}\cdot\left(-6\right).\)
\(a.\)
\(-\dfrac{5}{9}\cdot\dfrac{12}{35}=\dfrac{\left(-5\right)\cdot12}{9\cdot35}=\dfrac{-60}{315}=-\dfrac{4}{21}\)
\(b.\)
\(\left(-\dfrac{5}{8}\right)\cdot-\dfrac{6}{55}=\dfrac{\left(-5\right)\cdot\left(-6\right)}{8\cdot55}=\dfrac{30}{440}=\dfrac{3}{44}\)
\(c.\)
\(\left(-7\right)\cdot\dfrac{2}{5}=-\dfrac{14}{5}\)
\(d.\)
\(-\dfrac{3}{8}\cdot\left(-6\right)=\dfrac{-3\cdot\left(-6\right)}{8}=\dfrac{18}{8}=\dfrac{9}{4}\)
a) \(\dfrac{-5}{9}.\dfrac{12}{35}=\dfrac{-5.12}{9.35}=\dfrac{-4}{21}\)
b) \(\dfrac{-5}{8}.\dfrac{-6}{55}=\dfrac{-5.-6}{8.55}=\dfrac{3}{44}\)
c)\(-7.\dfrac{2}{5}=\dfrac{-7.2}{5}=\dfrac{-14}{5}\)
d) \(\dfrac{-3}{8}.-6=\dfrac{-3.-6}{8}=\dfrac{9}{4}\)
Tính thương và viết kết quả ở dạng phân số tối giản:
a) \(\dfrac{3}{5}\) :(-5)
b) 24 : \(\dfrac{-6}{7}\)
c) \(\dfrac{-4}{15}\) : 2
a, 3/5 : -5 = -3/25
b, 24 : -6/7 = -28
c, -4/15 : 2 = -2/15
a, 3/5 : -5 = -3/25
b, 24 : -6/7 = -28
c, -4/15 : 2 = -2/15
Viết kết quả dưới dạng luỹ thừa:
Cơ số \(\dfrac{3}{10};\left(0,09\right)^3;\left(\dfrac{3}{10}\right)^8;\left(0,027\right)^2\)
\(\left(0,09\right)^3=\left(\dfrac{9}{100}\right)^3=\left[\left(\dfrac{3}{10}\right)^2\right]^3=\left(\dfrac{3}{10}\right)^6\\ \left(\dfrac{3}{10}\right)^8=\left(\dfrac{3}{10}\right)^8\\ \left(0,027\right)^2=\left(\dfrac{27}{1000}\right)^2=\left[\left(\dfrac{3}{10}\right)^3\right]^2=\left(\dfrac{3}{10}\right)^6\)
Tính A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right).....\left(\dfrac{1}{100^2}-1\right)\)
Ta được A=...
(Nhập kết quả dạng phân số tối giản)
\(\dfrac{4}{\left(2+\dfrac{2}{1+\dfrac{4}{5}}\right)x-\left(1+\dfrac{4}{2+\dfrac{1}{1+\dfrac{7}{8}}}\right)}+\dfrac{1}{\left(2+\dfrac{1}{3+\dfrac{1}{4}}\right)}=4+\dfrac{2}{1+\dfrac{8}{9}}\)
Tìm x biết: (viết kết quả dưới dạng hổn số)
c) \(\left(1\dfrac{1}{4}\right)^{10}\). \(\left(\dfrac{2}{5}\right)^{20}\)
Viết kết quả dưới dạng một lũy thừa
`(1 1/4)^10 . (2/5)^20`
`=(5/4)^10 . (2/5)^20`
`=(5^10 .2^20)/(4^10 .5^20)`
`=(5^10 .4^10)/(4^10 .5^20)`
`=1/(5^10)`
`=(1/5)^10`
Để viết số \(0,0\left(3\right)\) dưới dạng phân số ta làm như sau :
\(0,0\left(3\right)=\dfrac{1}{10}.0,\left(3\right)=\dfrac{1}{10}.0,\left(1\right).3=\dfrac{1}{10}.\dfrac{1}{9}.3=\dfrac{1}{30}\) (vì \(\dfrac{1}{9}=0,\left(1\right)\))
Theo cách trên, hãy viết các số thập phân dưới đây dưới dạng phân số :
\(0,0\left(8\right);0,1\left(2\right);0,1\left(23\right)\)
Ta có :
\(0,0\left(8\right)=\dfrac{1}{10}.0,\left(8\right)=\dfrac{1}{10}.0,\left(1\right).8=\dfrac{1}{10}.\dfrac{1}{9}.8=\dfrac{4}{45}\)
\(0,1\left(2\right)=0,1+0,0\left(2\right)\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(2\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(1\right).2\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{9}.2=\dfrac{9}{90}+\dfrac{2}{90}=\dfrac{11}{90}\)
\(0,1\left(23\right)=0,1+0,0\left(23\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,23\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(01\right).23\)
\(\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{99}.23=\dfrac{99}{990}+\dfrac{23}{990}=\dfrac{122}{990}=\dfrac{61}{495}\)
\(\dfrac{34}{99};\dfrac{5}{9};\dfrac{41}{333}.\)
Xin lỗi, câu trả lời của em nhầm với bài 88. Đáp án sửa lại là :
\(\dfrac{4}{45};\dfrac{11}{90};\dfrac{61}{495}.\)
chứng minh các phân số sau tối giản:
a)\(\dfrac{n+1}{2n-3}\) ; b)\(\dfrac{2n+3}{4n+8}\) ; c)\(\dfrac{3n+2}{5n+3}\)
a:
Sửa đề: \(\dfrac{n+1}{2n+3}\)
Gọi d=ƯCLN(n+1;2n+3)
=>2n+2-2n-3 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
b: Gọi d=ƯCLN(4n+8;2n+3)
=>4n+8-4n-6 chia hết cho d
=>2 chia hêt cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Tìm tham số m để phương trình \(2m.sinx+\left(m-5\right)cox+m-7=0\) có 2 nghiêm phân biệt \(x\in(\dfrac{\pi}{2};\pi)\) ta được kết quả \(m\in\left(a;\dfrac{b}{c}\right)\) với \(a,b,c\in N\) và \(\dfrac{b}{c}\) là phân số tối giản. Tính tổng a + b +c .
Mong mn giúp e ạ, e đang cần rất gấp.