PHÂN TÍCH THÀNH NHÂN TỬ
\(^{X^2-X\sqrt{X}-5X-\sqrt{X}-6}\)
Phân tích thành nhân tử:
\(x-3\sqrt{x}+2\)
\(2x-\sqrt{x}-3\)
\(-5x+\sqrt{x}+6\)
\(-6\sqrt{x}+5x-11\)
\(6y^2-5y\sqrt{x}-x\)
\(x-2\sqrt{x-1}-a^2\)
\(6\sqrt{xy}-4x\sqrt{x}-9y\sqrt{y}+6xy\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
Phân tích đa thức thành nhân tử (với các căn thức đã cho đều có nghĩa)
A = \(x-y-3\left(\sqrt{x}+\sqrt{y}\right)\)
B = \(x-4\sqrt{x}+4\)
C = \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
D = \(5x^2-7x\sqrt{y}+2y\)
phân tích thành nhân tử
\(a-6\sqrt{a}+9-b^2\)
\(x-9\)
\(x-7\sqrt{x}+12\)
\(x\sqrt{x}-64\)
làm chi tiết xíu giúp em ạ.
a: =(căn a-3)^2-b^2
=(căn a-3-b)(căn a-3+b)
b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
c: \(x-7\sqrt{x}+12=x-3\sqrt{x}-4\sqrt{x}+12=\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)\)
d: x*căn x-64
=(căn x)^3-4^3
=(căn x-4)(x+4căn x+16)
\(a-6\sqrt{a}+9-b^2\\ =\left(\sqrt{a}+3\right)^2-b^2\\ =\left(\sqrt{a}+3-b\right)\left(\sqrt{a}+3+b\right)\)
\(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
\(x-7\sqrt{x}+12\\ =x-4\sqrt{x}-3\sqrt{x}+12\\ =\sqrt{x}\left(\sqrt{x}-4\right)-3\left(\sqrt{x}-4\right)\\ =\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\)
\(x\sqrt{x}+64\\ =\sqrt{x^3}+4^3\\ =\left(\sqrt{x}\right)^3+4^3\\ =\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)\)
Phân tích thành nhân tử
\(x+\sqrt{x}\)
\(x-\sqrt{x}\)
\(a+3\sqrt{a}-10\)
\(x\sqrt{x}+\sqrt{x}-x-1\)
\(x+\sqrt{x}-2\)
\(x-5\sqrt{x}+6\)
\(x\sqrt{x}-1\)
\(x\sqrt{x}-x+\sqrt{x}-1\)
\(x+2\sqrt{x}-15\)
\(x-2\sqrt{x}-3\)
\(a+\sqrt{a}-6\)
\(x-16\)
\(x+2\sqrt{x}+1\)
\(x-1\)
\(x-2\sqrt{x}+1\)
\(a\sqrt{a}+1\)
\(a+\sqrt{a}-2\)
\(2x-5\sqrt{x}+3\)
\(x-9\)
\(x+\sqrt{x}-6\)
1. $x+\sqrt{x}=\sqrt{x}(\sqrt{x}+1)$
2. $x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$
3. $a+3\sqrt{a}-10=(a-2\sqrt{a})+(5\sqrt{a}-10)$
$=\sqrt{a}(\sqrt{a}-2)+5(\sqrt{a}-2)=(\sqrt{a}+5)(\sqrt{a}-2)$
4. $x\sqrt{x}+\sqrt{x}-x-1=(x\sqrt{x}+\sqrt{x})-(x+1)=\sqrt{x}(x+1)-(x+1)$
$=(x+1)(\sqrt{x}-1)$
5. $x+\sqrt{x}-2=(x-\sqrt{x})+(2\sqrt{x}-2)$
$=\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)=(\sqrt{x}-1)(\sqrt{x}+2)$
6. $x-5\sqrt{x}+6=(x-2\sqrt{x})-(3\sqrt{x}-6)=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)=(\sqrt{x}-2)(\sqrt{x}-3)$
7. $x\sqrt{x}-1=(\sqrt{x})^3-1^3=(\sqrt{x}-1)(x+\sqrt{x}+1)$
8. $x\sqrt{x}-x+\sqrt{x}-1=x(\sqrt{x}-1)+(\sqrt{x}-1)=(\sqrt{x}-1)(x+1)$
9. $x+2\sqrt{x}-15=(x-3\sqrt{x})+(5\sqrt{x}-15)=\sqrt{x}(\sqrt{x}-3)+5(\sqrt{x}-3)=(\sqrt{x}-3)(\sqrt{x}+5)$
10. $x-2\sqrt{x}-3=(x+\sqrt{x})-(3\sqrt{x}+3)=\sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=(\sqrt{x}+1)(\sqrt{x}-3)$
\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)
\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.
Phân tích đa thức thành nhân tử
\(1.x^2-2xy+5x-10y\)
\(2.x-3\sqrt{x}+\sqrt{xy}-3y\)
\(x^2-2xy+5x-10y\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x+5\right)\left(x-2y\right)\)
\(x^2-2xy+5x-10y\)
\(=\left(x^2-2xy\right)+\left(5x-10y\right)\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+5\right)\)
\(x-3\sqrt{x}+\sqrt{xy}-3y\)
\(=\left(x-3\sqrt{x}\right)+\left(\sqrt{xy}-3y\right)\)
\(=\sqrt{x}\left(\sqrt{x}-3\right)+y\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}+y\right)\)
✰ ღ๖ۣۜDαɾƙ ๖ۣۜBαηɠ ๖ۣۜSĭℓεηтღ✰Giỏi thiệt \(\sqrt{xy}=y\sqrt{x}\)
Đọc lại sách lớp 9, bài LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
Phân tích thành nhân tử: x * sqrt(x) + 2x + sqrt(x) +2(với x>0)
\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)
\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)
\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử : \(x-6\sqrt{x-3}+6\)
\(x-6\sqrt{x-3}+6\text{=}x-3-6\sqrt{x-3}+9\)
\(\text{=}\left(\sqrt{x-3}\right)^2-2.3.\sqrt{x-3}+\left(3\right)^2\)
\(\text{=}\left(\sqrt{x-3}-3\right)^2\)
A = \(x-6\)\(\sqrt{x-3}\) + 6 (đkxd \(x>3\))
A = (\(x\) - 3) - 2.3.\(\sqrt{x-3}\) + 9
A = (\(\sqrt{x-3}\))2 - 2.3.\(\sqrt{x-3}\) + 32
A = (\(\sqrt{x-3}\)- 3)2